-
Previous Article
On the existence of Hadamard difference sets in groups of order 400
- AMC Home
- This Issue
-
Next Article
Construction of subspace codes through linkage
A note on Erdős-Ko-Rado sets of generators in Hermitian polar spaces
1. | Justus-Liebig-Universität, Mathematisches Institut, Arndtstraβe 2, D-35392 Gieβen, Belgium |
References:
[1] |
A. E. Brouwer, A. M. Cohen and A. Neumaier, Distance-regular graphs, in Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer, 1989.
doi: 10.1007/978-3-642-74341-2. |
[2] |
R. J. Elzinga and D. A. Gregory, Weighted matrix eigenvalue bounds on the independence number of a graph, Electr. J. Linear Algebra, 20 (2010), 468-489.
doi: 10.13001/1081-3810.1388. |
[3] |
C. D. Godsil and M. W. Newman, Eigenvalue bounds for independent sets, J. Combin. Theory Ser. B, 98 (2008), 721-734.
doi: 10.1016/j.jctb.2007.10.007. |
[4] |
F. Ihringer and K. Metsch, On the maximum size of Erdős-Ko-Rado sets in $H(2d+1, q^2)$, Des. Codes Cryptogr., 72 (2014), 311-316.
doi: 10.1007/s10623-012-9765-4. |
[5] |
C. J. Luz, A characterization of Delsarte's linear programming bound as a ratio bound, Linear Algebra Appl., 423 (2007), 99-108.
doi: 10.1016/j.laa.2006.10.009. |
[6] |
K. Metsch, An Erdős-Ko-Rado theorem for finite classical polar spaces, J. Algebraic Combin., to appear.
doi: 10.1007/s10801-015-0637-7. |
[7] |
V. Pepe, L. Storme and F. Vanhove, Theorems of Erdős-Ko-Rado type in polar spaces, J. Combin. Theory Ser. A, 118 (2011), 1291-1312.
doi: 10.1016/j.jcta.2011.01.003. |
[8] |
F. Vanhove, Incidence Geometry from an Algebraic Graph Theory Point of View, Ph.D thesis, Univ. Gent, Belgium, 2011. |
show all references
References:
[1] |
A. E. Brouwer, A. M. Cohen and A. Neumaier, Distance-regular graphs, in Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer, 1989.
doi: 10.1007/978-3-642-74341-2. |
[2] |
R. J. Elzinga and D. A. Gregory, Weighted matrix eigenvalue bounds on the independence number of a graph, Electr. J. Linear Algebra, 20 (2010), 468-489.
doi: 10.13001/1081-3810.1388. |
[3] |
C. D. Godsil and M. W. Newman, Eigenvalue bounds for independent sets, J. Combin. Theory Ser. B, 98 (2008), 721-734.
doi: 10.1016/j.jctb.2007.10.007. |
[4] |
F. Ihringer and K. Metsch, On the maximum size of Erdős-Ko-Rado sets in $H(2d+1, q^2)$, Des. Codes Cryptogr., 72 (2014), 311-316.
doi: 10.1007/s10623-012-9765-4. |
[5] |
C. J. Luz, A characterization of Delsarte's linear programming bound as a ratio bound, Linear Algebra Appl., 423 (2007), 99-108.
doi: 10.1016/j.laa.2006.10.009. |
[6] |
K. Metsch, An Erdős-Ko-Rado theorem for finite classical polar spaces, J. Algebraic Combin., to appear.
doi: 10.1007/s10801-015-0637-7. |
[7] |
V. Pepe, L. Storme and F. Vanhove, Theorems of Erdős-Ko-Rado type in polar spaces, J. Combin. Theory Ser. A, 118 (2011), 1291-1312.
doi: 10.1016/j.jcta.2011.01.003. |
[8] |
F. Vanhove, Incidence Geometry from an Algebraic Graph Theory Point of View, Ph.D thesis, Univ. Gent, Belgium, 2011. |
[1] |
Artem Dudko. Computability of the Julia set. Nonrecurrent critical orbits. Discrete and Continuous Dynamical Systems, 2014, 34 (7) : 2751-2778. doi: 10.3934/dcds.2014.34.2751 |
[2] |
Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete and Continuous Dynamical Systems - S, 2021, 14 (8) : 3043-3054. doi: 10.3934/dcdss.2020463 |
[3] |
Aaron Hoffman, Matt Holzer. Invasion fronts on graphs: The Fisher-KPP equation on homogeneous trees and Erdős-Réyni graphs. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 671-694. doi: 10.3934/dcdsb.2018202 |
[4] |
Noam Presman, Simon Litsyn. Recursive descriptions of polar codes. Advances in Mathematics of Communications, 2017, 11 (1) : 1-65. doi: 10.3934/amc.2017001 |
[5] |
Tran Ngoc Thang, Nguyen Thi Bach Kim. Outcome space algorithm for generalized multiplicative problems and optimization over the efficient set. Journal of Industrial and Management Optimization, 2016, 12 (4) : 1417-1433. doi: 10.3934/jimo.2016.12.1417 |
[6] |
Zalman Balanov, I. Gaishun, V. Gorohovik, Wieslaw Krawcewicz, A. Lebedev. On mathematical contributions of Petr Petrovich Zabreĭko. Discrete and Continuous Dynamical Systems - S, 2013, 6 (4) : 837-860. doi: 10.3934/dcdss.2013.6.837 |
[7] |
Chiu-Ya Lan, Huey-Er Lin, Shih-Hsien Yu. The Green's functions for the Broadwell Model in a half space problem. Networks and Heterogeneous Media, 2006, 1 (1) : 167-183. doi: 10.3934/nhm.2006.1.167 |
[8] |
Nguyen Thi Bach Kim, Nguyen Canh Nam, Le Quang Thuy. An outcome space algorithm for minimizing the product of two convex functions over a convex set. Journal of Industrial and Management Optimization, 2013, 9 (1) : 243-253. doi: 10.3934/jimo.2013.9.243 |
[9] |
Tiago Carvalho, Luiz Fernando Gonçalves. A flow on $ S^2 $ presenting the ball as its minimal set. Discrete and Continuous Dynamical Systems - B, 2021, 26 (8) : 4263-4280. doi: 10.3934/dcdsb.2020287 |
[10] |
Min Ye, Alexander Barg. Polar codes for distributed hierarchical source coding. Advances in Mathematics of Communications, 2015, 9 (1) : 87-103. doi: 10.3934/amc.2015.9.87 |
[11] |
Adrian Constantin, Darren G. Crowdy, Vikas S. Krishnamurthy, Miles H. Wheeler. Stuart-type polar vortices on a rotating sphere. Discrete and Continuous Dynamical Systems, 2021, 41 (1) : 201-215. doi: 10.3934/dcds.2020263 |
[12] |
Yuri Kalinin, Volker Reitmann, Nayil Yumaguzin. Asymptotic behavior of Maxwell's equation in one-space dimension with thermal effect. Conference Publications, 2011, 2011 (Special) : 754-762. doi: 10.3934/proc.2011.2011.754 |
[13] |
Anne-Sophie de Suzzoni. Consequences of the choice of a particular basis of $L^2(S^3)$ for the cubic wave equation on the sphere and the Euclidean space. Communications on Pure and Applied Analysis, 2014, 13 (3) : 991-1015. doi: 10.3934/cpaa.2014.13.991 |
[14] |
Wen-ming He, Jun-zhi Cui. The estimate of the multi-scale homogenization method for Green's function on Sobolev space $W^{1,q}(\Omega)$. Communications on Pure and Applied Analysis, 2012, 11 (2) : 501-516. doi: 10.3934/cpaa.2012.11.501 |
[15] |
Zhiming Li, Lin Shu. The metric entropy of random dynamical systems in a Hilbert space: Characterization of invariant measures satisfying Pesin's entropy formula. Discrete and Continuous Dynamical Systems, 2013, 33 (9) : 4123-4155. doi: 10.3934/dcds.2013.33.4123 |
[16] |
Jun Zhang, Xinyue Fan. An efficient spectral method for the Helmholtz transmission eigenvalues in polar geometries. Discrete and Continuous Dynamical Systems - B, 2019, 24 (9) : 4799-4813. doi: 10.3934/dcdsb.2019031 |
[17] |
Lan Wen. On the preperiodic set. Discrete and Continuous Dynamical Systems, 2000, 6 (1) : 237-241. doi: 10.3934/dcds.2000.6.237 |
[18] |
François Berteloot, Tien-Cuong Dinh. The Mandelbrot set is the shadow of a Julia set. Discrete and Continuous Dynamical Systems, 2020, 40 (12) : 6611-6633. doi: 10.3934/dcds.2020262 |
[19] |
Mohammed Al Horani, Angelo Favini. Inverse problems for singular differential-operator equations with higher order polar singularities. Discrete and Continuous Dynamical Systems - B, 2014, 19 (7) : 2159-2168. doi: 10.3934/dcdsb.2014.19.2159 |
[20] |
Xuefeng Shen, Khoa Tran, Melvin Leok. High-order symplectic Lie group methods on $ SO(n) $ using the polar decomposition. Journal of Computational Dynamics, 2022 doi: 10.3934/jcd.2022003 |
2021 Impact Factor: 1.015
Tools
Metrics
Other articles
by authors
[Back to Top]