\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

There is no $[24,12,9]$ doubly-even self-dual code over $\mathbb F_4$

Abstract Related Papers Cited by
  • We show that there is no $[24,12,9]$ doubly-even self-dual code over $\mathbb{F}_4$ by attempting to construct the generator matrix of this code directly.
    Mathematics Subject Classification: Primary: 94B05.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    E. F. Assmus, Jr. and H. F. Mattson, Jr., New $5$-designs, J. Combin. Theory, 6 (1969), 122-151.

    [2]

    K. Betsumiya, On the classification of type II codes over $\mathbbF_{2^r}$ with binary length 32, preprint.

    [3]

    K. Betsumiya, T. A. Gulliver, M. Harada and A. Munemasa, On type II codes over $\mathbbF_4$, IEEE Trans. Inform. Theory, 47 (2001), 2242-2248.doi: 10.1109/18.945245.

    [4]

    W. Bosma, J. Cannon and C. Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput., 24 (1997), 235-265.doi: 10.1006/jsco.1996.0125.

    [5]

    T. Feulner, The automorphism groups of linear codes and canonical representatives of their semilinear isometry classes, Adv. Math. Commun., 3 (2009), 363-383.doi: 10.3934/amc.2009.3.363.

    [6]

    P. Gaborit, V. Pless, P. Solé and O. Atkin, Type II codes over $\mathbbF_4$, Finite Fields Appl., 8 (2002), 171-183.doi: 10.1006/ffta.2001.0333.

    [7]

    A. Günther, Codes und Invariantentheorie (in German), Diploma thesis, RWTH Aachen, 2006. Available online at http://www.math.rwth-aachen.de/~Gabriele.Nebe/dipl/guenther.pdf

    [8]

    W. C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes, Cambridge University Press, 2003.doi: 10.1017/CBO9780511807077.

    [9]

    G. Nebe, H.-G. Quebbemann, E. M. Rains and N. J. A. Sloane, Complete weight enumerators of generalized doubly-even self-dual codes, Finite Fields Appl., 10 (2004), 540-550.doi: 10.1016/j.ffa.2003.12.001.

    [10]

    H.-G. Quebbemann, On even codes, Discrete Math., 98 (1991), 29-34.doi: 10.1016/0012-365X(91)90410-4.

    [11]

    The Sage Development TeamSage Mathematics Software, Version 6.4.1, http://www.sagemath.org

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(172) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return