-
Previous Article
The non-existence of $(104,22;3,5)$-arcs
- AMC Home
- This Issue
-
Next Article
There is no $[24,12,9]$ doubly-even self-dual code over $\mathbb F_4$
Explicit constructions of some non-Gabidulin linear maximum rank distance codes
1. | Department of Mathematics & Institute of Applied Mathematics, Middle East Technical University, 06800, Ankara, Turkey |
2. | Department of Mathematics and Institute of Applied Mathematics, Middle East Technical University, Dumlupnar Bulvar, 06800, Ankara |
References:
[1] |
J. Berson, Linearized polynomial maps over finite fields, J. Algebra, 399 (2014), 389-406.
doi: 10.1016/j.jalgebra.2013.10.013. |
[2] |
J. de la Cruz, M. Kiermaier, A. Wassermann and W. Willems, Algebraic structures of MRD Codes, Adv. Math. Commun., 10 (2016), 499-510.
doi: 10.3934/amc.2016021. |
[3] |
P. Delsarte, Bilinear forms over a finite field, with applications to coding theory, J. Comb. Theory A, 25 (1978), 226-241.
doi: 10.1016/0097-3165(78)90015-8. |
[4] |
E. M. Gabidulin, Theory of codes with maximum rank distance, Probl. Inform. Transm., 21 (1985), 1-12. |
[5] |
A.-L. Horlemann-Trautmann and K. Marshall, New criteria for MRD and Gabidulin codes and some rank-metric code constructions,, preprint, ().
|
[6] |
A. Kshevetskiy and E. Gabidulin, The new construction of rank codes, in Proc. Int. Symp. Inf. Theory (ISIT 2005), 2105-2108. |
[7] |
R. Lidl and H. Niederreiter, Finite Fields, Cambridge Univ. Press, 1997. |
[8] |
K. Morrison, Equivalence of rank-metric and matrix codes and automorphism groups of Gabidulin codes, IEEE Trans. Inf. Theory, 60 (2014), 7035-7046.
doi: 10.1109/TIT.2014.2359198. |
[9] |
O. Ore, On a special class of polynomials, Trans. Amer. Math. Soc., 35 (1933), 559-584.
doi: 10.2307/1989849. |
[10] |
J. Sheekey, A new family of linear maximum rank distance codes,, preprint, ().
|
show all references
References:
[1] |
J. Berson, Linearized polynomial maps over finite fields, J. Algebra, 399 (2014), 389-406.
doi: 10.1016/j.jalgebra.2013.10.013. |
[2] |
J. de la Cruz, M. Kiermaier, A. Wassermann and W. Willems, Algebraic structures of MRD Codes, Adv. Math. Commun., 10 (2016), 499-510.
doi: 10.3934/amc.2016021. |
[3] |
P. Delsarte, Bilinear forms over a finite field, with applications to coding theory, J. Comb. Theory A, 25 (1978), 226-241.
doi: 10.1016/0097-3165(78)90015-8. |
[4] |
E. M. Gabidulin, Theory of codes with maximum rank distance, Probl. Inform. Transm., 21 (1985), 1-12. |
[5] |
A.-L. Horlemann-Trautmann and K. Marshall, New criteria for MRD and Gabidulin codes and some rank-metric code constructions,, preprint, ().
|
[6] |
A. Kshevetskiy and E. Gabidulin, The new construction of rank codes, in Proc. Int. Symp. Inf. Theory (ISIT 2005), 2105-2108. |
[7] |
R. Lidl and H. Niederreiter, Finite Fields, Cambridge Univ. Press, 1997. |
[8] |
K. Morrison, Equivalence of rank-metric and matrix codes and automorphism groups of Gabidulin codes, IEEE Trans. Inf. Theory, 60 (2014), 7035-7046.
doi: 10.1109/TIT.2014.2359198. |
[9] |
O. Ore, On a special class of polynomials, Trans. Amer. Math. Soc., 35 (1933), 559-584.
doi: 10.2307/1989849. |
[10] |
J. Sheekey, A new family of linear maximum rank distance codes,, preprint, ().
|
[1] |
Anna-Lena Horlemann-Trautmann, Kyle Marshall. New criteria for MRD and Gabidulin codes and some Rank-Metric code constructions. Advances in Mathematics of Communications, 2017, 11 (3) : 533-548. doi: 10.3934/amc.2017042 |
[2] |
John Sheekey. A new family of linear maximum rank distance codes. Advances in Mathematics of Communications, 2016, 10 (3) : 475-488. doi: 10.3934/amc.2016019 |
[3] |
Umberto Martínez-Peñas. Rank equivalent and rank degenerate skew cyclic codes. Advances in Mathematics of Communications, 2017, 11 (2) : 267-282. doi: 10.3934/amc.2017018 |
[4] |
Kamil Otal, Ferruh Özbudak, Wolfgang Willems. Self-duality of generalized twisted Gabidulin codes. Advances in Mathematics of Communications, 2018, 12 (4) : 707-721. doi: 10.3934/amc.2018042 |
[5] |
Javier de la Cruz, Michael Kiermaier, Alfred Wassermann, Wolfgang Willems. Algebraic structures of MRD codes. Advances in Mathematics of Communications, 2016, 10 (3) : 499-510. doi: 10.3934/amc.2016021 |
[6] |
Rakhi Pratihar, Tovohery Hajatiana Randrianarisoa. Constructions of optimal rank-metric codes from automorphisms of rational function fields. Advances in Mathematics of Communications, 2022 doi: 10.3934/amc.2022034 |
[7] |
Enhui Lim, Frédérique Oggier. On the generalised rank weights of quasi-cyclic codes. Advances in Mathematics of Communications, 2022 doi: 10.3934/amc.2022010 |
[8] |
Gabriele Nebe, Wolfgang Willems. On self-dual MRD codes. Advances in Mathematics of Communications, 2016, 10 (3) : 633-642. doi: 10.3934/amc.2016031 |
[9] |
Ernst M. Gabidulin, Pierre Loidreau. Properties of subspace subcodes of Gabidulin codes. Advances in Mathematics of Communications, 2008, 2 (2) : 147-157. doi: 10.3934/amc.2008.2.147 |
[10] |
Olof Heden, Martin Hessler. On linear equivalence and Phelps codes. Addendum. Advances in Mathematics of Communications, 2011, 5 (3) : 543-546. doi: 10.3934/amc.2011.5.543 |
[11] |
Diego Napp, Roxana Smarandache. Constructing strongly-MDS convolutional codes with maximum distance profile. Advances in Mathematics of Communications, 2016, 10 (2) : 275-290. doi: 10.3934/amc.2016005 |
[12] |
José Joaquín Bernal, Diana H. Bueno-Carreño, Juan Jacobo Simón. Cyclic and BCH codes whose minimum distance equals their maximum BCH bound. Advances in Mathematics of Communications, 2016, 10 (2) : 459-474. doi: 10.3934/amc.2016018 |
[13] |
Olof Heden, Denis S. Krotov. On the structure of non-full-rank perfect $q$-ary codes. Advances in Mathematics of Communications, 2011, 5 (2) : 149-156. doi: 10.3934/amc.2011.5.149 |
[14] |
Tim Alderson, Alessandro Neri. Maximum weight spectrum codes. Advances in Mathematics of Communications, 2019, 13 (1) : 101-119. doi: 10.3934/amc.2019006 |
[15] |
José Ignacio Iglesias Curto. Generalized AG convolutional codes. Advances in Mathematics of Communications, 2009, 3 (4) : 317-328. doi: 10.3934/amc.2009.3.317 |
[16] |
Yujuan Li, Guizhen Zhu. On the error distance of extended Reed-Solomon codes. Advances in Mathematics of Communications, 2016, 10 (2) : 413-427. doi: 10.3934/amc.2016015 |
[17] |
Carlos Munuera, Morgan Barbier. Wet paper codes and the dual distance in steganography. Advances in Mathematics of Communications, 2012, 6 (3) : 273-285. doi: 10.3934/amc.2012.6.273 |
[18] |
San Ling, Buket Özkaya. New bounds on the minimum distance of cyclic codes. Advances in Mathematics of Communications, 2021, 15 (1) : 1-8. doi: 10.3934/amc.2020038 |
[19] |
Jinmei Fan, Yanhai Zhang. Optimal quinary negacyclic codes with minimum distance four. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021043 |
[20] |
Olof Heden, Fabio Pasticci, Thomas Westerbäck. On the symmetry group of extended perfect binary codes of length $n+1$ and rank $n-\log(n+1)+2$. Advances in Mathematics of Communications, 2012, 6 (2) : 121-130. doi: 10.3934/amc.2012.6.121 |
2020 Impact Factor: 0.935
Tools
Metrics
Other articles
by authors
[Back to Top]