November  2016, 10(4): 725-741. doi: 10.3934/amc.2016037

Further results on semi-bent functions in polynomial form

1. 

School of Mathematical Sciences, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China, China, China

Received  August 2014 Revised  June 2015 Published  November 2016

Plateaued functions have been introduced by Zheng and Zhang in 1999 as good candidates for designing cryptographic functions since they possess many desirable cryptographic characteristics. Plateaued functions bring together various nonlinear characteristics and include two important classes of Boolean functions defined in even dimension: the well-known bent functions ($0$-plateaued functions) and the semi-bent functions ($2$-plateaued functions). Bent functions have been extensively investigated since 1976. Very recently, the study of semi-bent functions has attracted a lot of attention in symmetric cryptography. Many intensive progresses in the design of such functions have been made especially in recent years. The paper is devoted to the construction of semi-bent functions on the finite field $\mathbb{F}_{2^n}$ ($n=2m$) in the line of a recent work of S. Mesnager [IEEE Transactions on Information Theory, Vol 57, No 11, 2011]. We extend Mesnager's results and present a new construction of infinite classes of binary semi-bent functions in polynomial trace. The extension is achieved by inserting mappings $h$ on $\mathbb{F}_{2^n}$ which can be expressed as $h(0) = 0$ and $h(uy) = h_1(u)h_2(y)$ with $u$ ranging over the circle $U$ of unity of $\mathbb{F}_{2^n}$, $y \in \mathbb{F}_{2^m}^{*}$ and $uy \in \mathbb{F}_{2^n}^{*}$, where $h_1$ is a isomorphism on $U$ and $h_2$ is an arbitrary mapping on $\mathbb{F}_{2^m}^{*}$. We then characterize the semi-bentness property of the extended family in terms of classical binary exponential sums and binary polynomials.
Citation: Xiwang Cao, Hao Chen, Sihem Mesnager. Further results on semi-bent functions in polynomial form. Advances in Mathematics of Communications, 2016, 10 (4) : 725-741. doi: 10.3934/amc.2016037
References:
[1]

L. Carlitz, Explicit evaluation of certain exponential sums, Math. Scand, 44 (1979), 5-16.

[2]

C. Carlet, Boolean Functions for Cryptography and Error Correcting Codes, in Boolean Models and Methods in Mathematics, Computer Science, and Engineering, Cambridge Univ. Press, 2010, 257-397.

[3]

P. Charpin, T. Helleseth and V. Zinoviev, The divisibility modulo $24$ of Kloosterman sums of $GF(2^m)$, $m$ odd, J. Comb. Theory A, 114 (2007), 322-338. doi: 10.1016/j.jcta.2006.06.002.

[4]

S. Chee, S. Lee and K. Kim, Semi-bent Functions, in Int. Conf. Theory Appl. Crypt., Springer, Berlin, 1994, 105-118.

[5]

J. F. Dillon and H. Dobbertin, New cyclic difference sets with Singer parameters, Finite Fields Appl., 10 (2004), 342-389. doi: 10.1016/j.ffa.2003.09.003.

[6]

G. Lachaud and J. Wolfmann, The weights of the orthogonals of the extended quadratic binary Goppa codes, IEEE Trans. IT, 36 (1990), 686-692. doi: 10.1109/18.54892.

[7]

R. Lidl, G. L. Mullen and G. Turnwald, Dickson Polynomials, Addison-Wesley, Reading, MA, 1993, 186-199.

[8]

G. Leander, Monomial bent functions, IEEE Trans. IT, 52 (2006), 738-743. doi: 10.1109/TIT.2005.862121.

[9]

S. Mesnager, Bent and hyper-bent functions in polynomial form and their link with some exponential sums and Dickson polynomials, IEEE Trans. IT, 57 (2011), 5996-6009. doi: 10.1109/TIT.2011.2124439.

[10]

S. Mesnager, Semi-bent functions from Dillon and Niho exponents, Kloosterman sums and Dickson polynomials, IEEE Trans. IT, 57 (2011), 7443-7458. doi: 10.1109/TIT.2011.2160039.

[11]

S. Mesnager, Contributions on Boolean functions for symmetric cryptography and error correcting codes, Habilitation to Direct Research in Mathematics (HDR thesis), 2012.

[12]

S. Mesnager, Several new infinite families of bent functions and their duals, IEEE Trans. IT, 60 (2014), 4397-4407. doi: 10.1109/TIT.2014.2320974.

[13]

S. Mesnager, On semi-bent functions and related plateaued functions over the Galois field $\mathbb F_{2^n}$, in Open Problems in Mathematics and Computational Science, Springer, 2014, 243-273.

[14]

S. Mesnager and J. P. Flori, Hyper-bent functions via Dillon-like exponents, IEEE Trans. IT, 59 (2013), 3215-3232. doi: 10.1109/TIT.2013.2238580.

[15]

O. S. Rothaus, On bent functions, J. Combin.Theory, Ser A, 20 (1976), 300-305.

[16]

Y. Zheng and X. M. Zhang, Relationships between bent functions and complementary plateaued functions, in Int. Conf. Inform. Secur. Crypt., Springer, Berlin, 1999, 60-75.

[17]

Y. Zheng and X. M. Zhang, Plateaued functions, in Int. Conf. Inform. Commun. Secur., Springer, Berlin, 1999, 284-300. doi: 10.1007/3-540-48892-8_22.

show all references

References:
[1]

L. Carlitz, Explicit evaluation of certain exponential sums, Math. Scand, 44 (1979), 5-16.

[2]

C. Carlet, Boolean Functions for Cryptography and Error Correcting Codes, in Boolean Models and Methods in Mathematics, Computer Science, and Engineering, Cambridge Univ. Press, 2010, 257-397.

[3]

P. Charpin, T. Helleseth and V. Zinoviev, The divisibility modulo $24$ of Kloosterman sums of $GF(2^m)$, $m$ odd, J. Comb. Theory A, 114 (2007), 322-338. doi: 10.1016/j.jcta.2006.06.002.

[4]

S. Chee, S. Lee and K. Kim, Semi-bent Functions, in Int. Conf. Theory Appl. Crypt., Springer, Berlin, 1994, 105-118.

[5]

J. F. Dillon and H. Dobbertin, New cyclic difference sets with Singer parameters, Finite Fields Appl., 10 (2004), 342-389. doi: 10.1016/j.ffa.2003.09.003.

[6]

G. Lachaud and J. Wolfmann, The weights of the orthogonals of the extended quadratic binary Goppa codes, IEEE Trans. IT, 36 (1990), 686-692. doi: 10.1109/18.54892.

[7]

R. Lidl, G. L. Mullen and G. Turnwald, Dickson Polynomials, Addison-Wesley, Reading, MA, 1993, 186-199.

[8]

G. Leander, Monomial bent functions, IEEE Trans. IT, 52 (2006), 738-743. doi: 10.1109/TIT.2005.862121.

[9]

S. Mesnager, Bent and hyper-bent functions in polynomial form and their link with some exponential sums and Dickson polynomials, IEEE Trans. IT, 57 (2011), 5996-6009. doi: 10.1109/TIT.2011.2124439.

[10]

S. Mesnager, Semi-bent functions from Dillon and Niho exponents, Kloosterman sums and Dickson polynomials, IEEE Trans. IT, 57 (2011), 7443-7458. doi: 10.1109/TIT.2011.2160039.

[11]

S. Mesnager, Contributions on Boolean functions for symmetric cryptography and error correcting codes, Habilitation to Direct Research in Mathematics (HDR thesis), 2012.

[12]

S. Mesnager, Several new infinite families of bent functions and their duals, IEEE Trans. IT, 60 (2014), 4397-4407. doi: 10.1109/TIT.2014.2320974.

[13]

S. Mesnager, On semi-bent functions and related plateaued functions over the Galois field $\mathbb F_{2^n}$, in Open Problems in Mathematics and Computational Science, Springer, 2014, 243-273.

[14]

S. Mesnager and J. P. Flori, Hyper-bent functions via Dillon-like exponents, IEEE Trans. IT, 59 (2013), 3215-3232. doi: 10.1109/TIT.2013.2238580.

[15]

O. S. Rothaus, On bent functions, J. Combin.Theory, Ser A, 20 (1976), 300-305.

[16]

Y. Zheng and X. M. Zhang, Relationships between bent functions and complementary plateaued functions, in Int. Conf. Inform. Secur. Crypt., Springer, Berlin, 1999, 60-75.

[17]

Y. Zheng and X. M. Zhang, Plateaued functions, in Int. Conf. Inform. Commun. Secur., Springer, Berlin, 1999, 284-300. doi: 10.1007/3-540-48892-8_22.

[1]

Gennady Bachman. Exponential sums with multiplicative coefficients. Electronic Research Announcements, 1999, 5: 128-135.

[2]

Sihem Mesnager, Fengrong Zhang. On constructions of bent, semi-bent and five valued spectrum functions from old bent functions. Advances in Mathematics of Communications, 2017, 11 (2) : 339-345. doi: 10.3934/amc.2017026

[3]

Bimal Mandal, Aditi Kar Gangopadhyay. A note on generalization of bent boolean functions. Advances in Mathematics of Communications, 2021, 15 (2) : 329-346. doi: 10.3934/amc.2020069

[4]

Dae San Kim. Infinite families of recursive formulas generating power moments of ternary Kloosterman sums with square arguments arising from symplectic groups. Advances in Mathematics of Communications, 2009, 3 (2) : 167-178. doi: 10.3934/amc.2009.3.167

[5]

Tingting Pang, Nian Li, Li Zhang, Xiangyong Zeng. Several new classes of (balanced) Boolean functions with few Walsh transform values. Advances in Mathematics of Communications, 2021, 15 (4) : 757-775. doi: 10.3934/amc.2020095

[6]

Dmitry Krachun, Zhi-Wei Sun. On sums of four pentagonal numbers with coefficients. Electronic Research Archive, 2020, 28 (1) : 559-566. doi: 10.3934/era.2020029

[7]

Qiushuang Wang, Run Xu. A review of definitions of fractional differences and sums. Mathematical Foundations of Computing, 2022  doi: 10.3934/mfc.2022013

[8]

Hai-Liang Wu, Zhi-Wei Sun. Some universal quadratic sums over the integers. Electronic Research Archive, 2019, 27: 69-87. doi: 10.3934/era.2019010

[9]

Manfred Denker, Samuel Senti, Xuan Zhang. Fluctuations of ergodic sums on periodic orbits under specification. Discrete and Continuous Dynamical Systems, 2020, 40 (8) : 4665-4687. doi: 10.3934/dcds.2020197

[10]

Guy Cohen, Jean-Pierre Conze. The CLT for rotated ergodic sums and related processes. Discrete and Continuous Dynamical Systems, 2013, 33 (9) : 3981-4002. doi: 10.3934/dcds.2013.33.3981

[11]

Benjamin Galbally, Sergey Zelik. Cesaro summation by spheres of lattice sums and Madelung constants. Communications on Pure and Applied Analysis, 2021, 20 (12) : 4195-4208. doi: 10.3934/cpaa.2021153

[12]

Claude Carlet, Stjepan Picek. On the exponents of APN power functions and Sidon sets, sum-free sets, and Dickson polynomials. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021064

[13]

Liqin Qian, Xiwang Cao. Character sums over a non-chain ring and their applications. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020134

[14]

Yinghui Dong, Guojing Wang. Ruin probability for renewal risk model with negative risk sums. Journal of Industrial and Management Optimization, 2006, 2 (2) : 229-236. doi: 10.3934/jimo.2006.2.229

[15]

Vincent Astier, Thomas Unger. Signatures, sums of hermitian squares and positive cones on algebras with involution. Electronic Research Announcements, 2018, 25: 16-26. doi: 10.3934/era.2018.25.003

[16]

Zhi-Wei Sun. Unification of zero-sum problems, subset sums and covers of Z. Electronic Research Announcements, 2003, 9: 51-60.

[17]

Guang-hui Cai. Strong laws for weighted sums of i.i.d. random variables. Electronic Research Announcements, 2006, 12: 29-36.

[18]

Xiao-Song Yang. Index sums of isolated singular points of positive vector fields. Discrete and Continuous Dynamical Systems, 2009, 25 (3) : 1033-1039. doi: 10.3934/dcds.2009.25.1033

[19]

Barbara Brandolini, Francesco Chiacchio, Jeffrey J. Langford. Estimates for sums of eigenvalues of the free plate via the fourier transform. Communications on Pure and Applied Analysis, 2020, 19 (1) : 113-122. doi: 10.3934/cpaa.2020007

[20]

Junchao Zhou, Yunge Xu, Lisha Wang, Nian Li. Nearly optimal codebooks from generalized Boolean bent functions over $ \mathbb{Z}_{4} $. Advances in Mathematics of Communications, 2022, 16 (3) : 485-501. doi: 10.3934/amc.2020121

2020 Impact Factor: 0.935

Metrics

  • PDF downloads (196)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]