-
Previous Article
A note on diagonal and Hermitian hypersurfaces
- AMC Home
- This Issue
-
Next Article
Further results on semi-bent functions in polynomial form
An extension of binary threshold sequences from Fermat quotients
1. | College of Mathematics and Statistics, Northwest Normal University, Lanzhou, Gansu 730070, China, China |
2. | School of Mathematics, Putian University, Putian, Fujian 351100, China |
References:
[1] |
T. Agoh, K. Dilcher and L. Skula, Fermat quotients for composite moduli, J. Number Theory, 66 (1997), 29-50.
doi: 10.1006/jnth.1997.2162. |
[2] |
Z. Chen and X. Du, On the linear complexity of binary threshold sequences derived from Fermat quotients, Des. Codes Cryptogr., 67 (2013), 317-323.
doi: 10.1007/s10623-012-9608-3. |
[3] |
Z. Chen, L. Hu and X. Du, Linear complexity of some binary sequences derived from Fermat quotients, China Commun., 9 (2012), 105-108.
doi: 10.1007/s10623-012-9608-3. |
[4] |
Z. Chen, A. Ostafe and A. Winterhof, Structure of pseudorandom numbers derived from Fermat quotients, in Proc. WAIFI 2010, Springer-Verlag, Heidelberg, 2010, 73-85.
doi: 10.1007/978-3-642-13797-6_6. |
[5] |
Z. Chen and A. Winterhof, On the distribution of pseudorandom numbers and vectors derived from Euler-Fermat quotients, Int. J. Number Theory, 8 (2012), 631-641.
doi: 10.1142/S1793042112500352. |
[6] |
R. Crandall, K. Dilcher and C. Pomerance, A search for Wieferich and Wilson primes, Math. Comp., 66 (1997), 433-449.
doi: 10.1090/S0025-5718-97-00791-6. |
[7] |
A. Cunningham, Period-lengths of circulates, Messenger Math., 29 (1900), 145-179. |
[8] |
X. Du, Z. Chen and L. Hu, Linear complexity of binary sequences derived from Euler quotients with prime-power modulus, Inform. Proc. Letters, 112 (2012), 604-609.
doi: 10.1016/j.ipl.2012.04.011. |
[9] |
X. Du, A. Klapper and Z. Chen, Linear complexity of pseudorandom sequences generated by Fermat quotients and their generalizations, Inform. Proc. Letters, 112 (2012), 233-237.
doi: 10.1016/j.ipl.2011.11.017. |
[10] |
R. Ernvall and T. Metsänkylä, On the p-divisibility of Fermat quotients, Math. Comp., 66 (1997), 1353-1365.
doi: 10.1090/S0025-5718-97-00843-0. |
[11] |
D. Gomez and A. Winterhof, Multiplicative character sums of Fermat quotients and pseudorandom sequences, Period. Math. Hungar., 64 (2012), 161-168.
doi: 10.1007/s10998-012-3747-1. |
[12] |
A. Granville, Some conjectures related to Fermat's Last Theorem, in Number Theory, Walter de Gruyter, Berlin, 1990, 177-192. |
[13] |
W. Keller and J. Richstein, Prime solutions $p$ of $a^{p-1}\equiv 1$ (mod $p^2$) for prime bases $a$, Math. Comput., 74 (2005), 927-936.
doi: 10.1090/S0025-5718-04-01666-7. |
[14] |
R. Lidl and H. Niederreiter, Finite Fields, Addison-Wesley, Reading, MA, 1983. |
[15] |
J. L. Massey, Shift register synthesis and BCH decoding, IEEE Trans. Inform. Theory, 15 (1969), 122-127. |
[16] |
A. Ostafe and I. E. Shparlinski, Pseudorandomness and dynamics of Fermat quotients, SIAM J. Discrete Math., 25 (2011), 50-71.
doi: 10.1137/100798466. |
[17] |
A. Winterhof, Linear complexity and related complexity measures, in Selected Topics in Information and Coding Theory, World Scientic, 2010, 3-40.
doi: 10.1142/9789812837172_0001. |
[18] |
M. Sha, The arithmetic of Carmichael quotients, preprint, arXiv:1108.2579
doi: 10.1007/s10998-014-0079-3. |
[19] |
I. E. Shparlinski, Bounds of multiplicative character sums with Fermat quotients of primes, Bull. Aust. Math. Soc., 83 (2011), 456-462.
doi: 10.1017/S000497271000198X. |
[20] |
I. E. Shparlinski, Character sums with Fermat quotients, Quart. J. Math., 62 (2011), 1031-1043.
doi: 10.1093/qmath/haq028. |
[21] |
I. E. Shparlinski, Fermat quotients: Exponential sums, value set and primitive roots, Bull. London Math. Soc., 43 (2011), 1228-1238.
doi: 10.1112/blms/bdr058. |
[22] |
I. E. Shparlinski, On the value set of Fermat quotients, Proc. Amer. Math. Soc., 140 (2012), 1199-1206.
doi: 10.1090/S0002-9939-2011-11203-6. |
show all references
References:
[1] |
T. Agoh, K. Dilcher and L. Skula, Fermat quotients for composite moduli, J. Number Theory, 66 (1997), 29-50.
doi: 10.1006/jnth.1997.2162. |
[2] |
Z. Chen and X. Du, On the linear complexity of binary threshold sequences derived from Fermat quotients, Des. Codes Cryptogr., 67 (2013), 317-323.
doi: 10.1007/s10623-012-9608-3. |
[3] |
Z. Chen, L. Hu and X. Du, Linear complexity of some binary sequences derived from Fermat quotients, China Commun., 9 (2012), 105-108.
doi: 10.1007/s10623-012-9608-3. |
[4] |
Z. Chen, A. Ostafe and A. Winterhof, Structure of pseudorandom numbers derived from Fermat quotients, in Proc. WAIFI 2010, Springer-Verlag, Heidelberg, 2010, 73-85.
doi: 10.1007/978-3-642-13797-6_6. |
[5] |
Z. Chen and A. Winterhof, On the distribution of pseudorandom numbers and vectors derived from Euler-Fermat quotients, Int. J. Number Theory, 8 (2012), 631-641.
doi: 10.1142/S1793042112500352. |
[6] |
R. Crandall, K. Dilcher and C. Pomerance, A search for Wieferich and Wilson primes, Math. Comp., 66 (1997), 433-449.
doi: 10.1090/S0025-5718-97-00791-6. |
[7] |
A. Cunningham, Period-lengths of circulates, Messenger Math., 29 (1900), 145-179. |
[8] |
X. Du, Z. Chen and L. Hu, Linear complexity of binary sequences derived from Euler quotients with prime-power modulus, Inform. Proc. Letters, 112 (2012), 604-609.
doi: 10.1016/j.ipl.2012.04.011. |
[9] |
X. Du, A. Klapper and Z. Chen, Linear complexity of pseudorandom sequences generated by Fermat quotients and their generalizations, Inform. Proc. Letters, 112 (2012), 233-237.
doi: 10.1016/j.ipl.2011.11.017. |
[10] |
R. Ernvall and T. Metsänkylä, On the p-divisibility of Fermat quotients, Math. Comp., 66 (1997), 1353-1365.
doi: 10.1090/S0025-5718-97-00843-0. |
[11] |
D. Gomez and A. Winterhof, Multiplicative character sums of Fermat quotients and pseudorandom sequences, Period. Math. Hungar., 64 (2012), 161-168.
doi: 10.1007/s10998-012-3747-1. |
[12] |
A. Granville, Some conjectures related to Fermat's Last Theorem, in Number Theory, Walter de Gruyter, Berlin, 1990, 177-192. |
[13] |
W. Keller and J. Richstein, Prime solutions $p$ of $a^{p-1}\equiv 1$ (mod $p^2$) for prime bases $a$, Math. Comput., 74 (2005), 927-936.
doi: 10.1090/S0025-5718-04-01666-7. |
[14] |
R. Lidl and H. Niederreiter, Finite Fields, Addison-Wesley, Reading, MA, 1983. |
[15] |
J. L. Massey, Shift register synthesis and BCH decoding, IEEE Trans. Inform. Theory, 15 (1969), 122-127. |
[16] |
A. Ostafe and I. E. Shparlinski, Pseudorandomness and dynamics of Fermat quotients, SIAM J. Discrete Math., 25 (2011), 50-71.
doi: 10.1137/100798466. |
[17] |
A. Winterhof, Linear complexity and related complexity measures, in Selected Topics in Information and Coding Theory, World Scientic, 2010, 3-40.
doi: 10.1142/9789812837172_0001. |
[18] |
M. Sha, The arithmetic of Carmichael quotients, preprint, arXiv:1108.2579
doi: 10.1007/s10998-014-0079-3. |
[19] |
I. E. Shparlinski, Bounds of multiplicative character sums with Fermat quotients of primes, Bull. Aust. Math. Soc., 83 (2011), 456-462.
doi: 10.1017/S000497271000198X. |
[20] |
I. E. Shparlinski, Character sums with Fermat quotients, Quart. J. Math., 62 (2011), 1031-1043.
doi: 10.1093/qmath/haq028. |
[21] |
I. E. Shparlinski, Fermat quotients: Exponential sums, value set and primitive roots, Bull. London Math. Soc., 43 (2011), 1228-1238.
doi: 10.1112/blms/bdr058. |
[22] |
I. E. Shparlinski, On the value set of Fermat quotients, Proc. Amer. Math. Soc., 140 (2012), 1199-1206.
doi: 10.1090/S0002-9939-2011-11203-6. |
[1] |
Zhixiong Chen, Vladimir Edemskiy, Pinhui Ke, Chenhuang Wu. On $k$-error linear complexity of pseudorandom binary sequences derived from Euler quotients. Advances in Mathematics of Communications, 2018, 12 (4) : 805-816. doi: 10.3934/amc.2018047 |
[2] |
Huaning Liu, Xi Liu. On the correlation measures of orders $ 3 $ and $ 4 $ of binary sequence of period $ p^2 $ derived from Fermat quotients. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021008 |
[3] |
Alina Ostafe, Igor E. Shparlinski, Arne Winterhof. On the generalized joint linear complexity profile of a class of nonlinear pseudorandom multisequences. Advances in Mathematics of Communications, 2010, 4 (3) : 369-379. doi: 10.3934/amc.2010.4.369 |
[4] |
Grant Cairns, Barry Jessup, Marcel Nicolau. Topologically transitive homeomorphisms of quotients of tori. Discrete and Continuous Dynamical Systems, 1999, 5 (2) : 291-300. doi: 10.3934/dcds.1999.5.291 |
[5] |
Gilberto Bini, Margarida Melo, Filippo Viviani. On GIT quotients of Hilbert and Chow schemes of curves. Electronic Research Announcements, 2012, 19: 33-40. doi: 10.3934/era.2012.19.33 |
[6] |
R. V. Gurjar, Mariusz Koras and Peter Russell. Two dimensional quotients of $CC^n$ by a reductive group. Electronic Research Announcements, 2008, 15: 62-64. doi: 10.3934/era.2008.15.62 |
[7] |
Eckhard Meinrenken. Quotients of double vector bundles and multigraded bundles. Journal of Geometric Mechanics, 2022, 14 (2) : 307-329. doi: 10.3934/jgm.2021027 |
[8] |
Liqin Hu, Qin Yue, Fengmei Liu. Linear complexity of cyclotomic sequences of order six and BCH codes over GF(3). Advances in Mathematics of Communications, 2014, 8 (3) : 297-312. doi: 10.3934/amc.2014.8.297 |
[9] |
Jianqin Zhou, Wanquan Liu, Xifeng Wang. Structure analysis on the k-error linear complexity for 2n-periodic binary sequences. Journal of Industrial and Management Optimization, 2017, 13 (4) : 1743-1757. doi: 10.3934/jimo.2017016 |
[10] |
Lin Yi, Xiangyong Zeng, Zhimin Sun, Shasha Zhang. On the linear complexity and autocorrelation of generalized cyclotomic binary sequences with period $ 4p^n $. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021019 |
[11] |
Jérôme Ducoat, Frédérique Oggier. On skew polynomial codes and lattices from quotients of cyclic division algebras. Advances in Mathematics of Communications, 2016, 10 (1) : 79-94. doi: 10.3934/amc.2016.10.79 |
[12] |
Stéphane Sabourau. Growth of quotients of groups acting by isometries on Gromov-hyperbolic spaces. Journal of Modern Dynamics, 2013, 7 (2) : 269-290. doi: 10.3934/jmd.2013.7.269 |
[13] |
Marco Zambon, Chenchang Zhu. Distributions and quotients on degree $1$ NQ-manifolds and Lie algebroids. Journal of Geometric Mechanics, 2012, 4 (4) : 469-485. doi: 10.3934/jgm.2012.4.469 |
[14] |
Frédérique Oggier, B. A. Sethuraman. Quotients of orders in cyclic algebras and space-time codes. Advances in Mathematics of Communications, 2013, 7 (4) : 441-461. doi: 10.3934/amc.2013.7.441 |
[15] |
Siyuan Tang. New time-changes of unipotent flows on quotients of Lorentz groups. Journal of Modern Dynamics, 2022, 18: 13-67. doi: 10.3934/jmd.2022002 |
[16] |
Jianqin Zhou, Wanquan Liu, Xifeng Wang. Complete characterization of the first descent point distribution for the k-error linear complexity of 2n-periodic binary sequences. Advances in Mathematics of Communications, 2017, 11 (3) : 429-444. doi: 10.3934/amc.2017036 |
[17] |
Jianqin Zhou, Wanquan Liu, Xifeng Wang, Guanglu Zhou. On the $ k $-error linear complexity for $ p^n $-periodic binary sequences via hypercube theory. Mathematical Foundations of Computing, 2019, 2 (4) : 279-297. doi: 10.3934/mfc.2019018 |
[18] |
Jiarong Peng, Xiangyong Zeng, Zhimin Sun. Finite length sequences with large nonlinear complexity. Advances in Mathematics of Communications, 2018, 12 (1) : 215-230. doi: 10.3934/amc.2018015 |
[19] |
Huaning Liu, Yixin Ren. On the pseudorandom properties of $ k $-ary Sidel'nikov sequences. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021038 |
[20] |
Cheng Zheng. Sparse equidistribution of unipotent orbits in finite-volume quotients of $\text{PSL}(2,\mathbb R)$. Journal of Modern Dynamics, 2016, 10: 1-21. doi: 10.3934/jmd.2016.10.1 |
2021 Impact Factor: 1.015
Tools
Metrics
Other articles
by authors
[Back to Top]