-
Previous Article
Public key protocols over the ring $E_{p}^{(m)}$
- AMC Home
- This Issue
-
Next Article
Some new two-weight ternary and quinary codes of lengths six and twelve
Computing Gröbner bases associated with lattices
1. | Departamento de Matemática, Universidad de Oriente, Santiago de Cuba |
2. | School of Mathematics and Statistics, Carleton University, Ottawa |
References:
[1] |
W. W. Adams and P. Loustaunau, An Introduction to Gröbner Bases, Amer. Math. Soc., 1994.
doi: 10.1090/gsm/003. |
[2] |
M. Aliasgari, M. R. Sadeghi and D. Panario, Gröbner bases for lattices and an algebraic decoding algorithm, IEEE Trans. Commun., 61 (2013), 1222-1230. |
[3] |
A. H. Banihashemi and I. F. Blake, Trellis complexity and minimal trellis diagrams of lattices, IEEE Trans. Inform. Theory, 44 (1998), 1829-1847.
doi: 10.1109/18.705562. |
[4] |
A. H. Banihashemi and F. R. Kschischang, Tanner graphs for group block codes and lattices: construction and complexity, IEEE Trans. Inform. Theory, 47 (2001), 822-834.
doi: 10.1109/18.910592. |
[5] |
M. Borges-Quintana, M. A. Borges-Trenard and E. Martínez-Moro, A Gröbner representation for linear codes, in Adv. Coding Theory Crypt., World Scientific, 2007, 17-32. |
[6] |
M. Borges-Quintana, M. A. Borges-Trenard and E. Martínez-Moro, On a Gröbner bases structure associated to linear codes, J. Discrete Math. Sci. Crypt., 10 (2007), 151-191.
doi: 10.1080/09720529.2007.10698114. |
[7] |
M. Borges-Quintana, M. A. Borges-Trenard, P. Fitzpatrick and E. Martínez-Moro, On Gröbner basis and combinatorics for binary codes, Appl. Algebra Engin. Commun. Comp., 19 (2008), 393-411.
doi: 10.1007/s00200-008-0080-2. |
[8] |
M. A. Borges-Trenard, M. Borges-Quintana and T. Mora, Computing Gröbner bases by FGLM techniques in a non-commutative setting, J. Symb. Comput., 30 (2000), 429-449.
doi: 10.1006/jsco.1999.0415. |
[9] |
B. Buchberger, An Algorithm for Finding a Basis for the Residue Class Ring of a Zero-dimensional Ideal (in German), Ph.D. thesis, Univ. Innsbruck, Austria, 1965. |
[10] |
B. Buchberger and H. M. Möller, The construction of multivariate polynomials with preassigned zeros, in EUROCAM'82, Marseille, 1982, 24-31. |
[11] |
J. C. Faugere, P. Gianni, D. Lazard and T. Mora, Efficient computation of zerodimensional Gröbner bases by change of ordering, J. Symb. Comput., 16 (1993), 329-344.
doi: 10.1006/jsco.1993.1051. |
[12] |
The GAP Group, GAP-Groups, Algorithms, and Programming, available online at http://www.gap-system.org |
[13] |
S. Lundqvist, Complexity of comparing monomials and two improvements of the BM-algorithm, in Math. Methods Computer Science, Springer, Berlin, 2008, 105-125.
doi: 10.1007/978-3-540-89994-5_9. |
[14] |
I. Márquez-Corbella and E. Martínez-Moro, Algebraic structure of the minimal support codewords set of some linear codes, Adv. Math. Commun., 5 (2011), 233-244.
doi: 10.3934/amc.2011.5.233. |
[15] |
T. Mora, Solving Polynomial Equation Systems II: Macaulay's Paradigm and Gröbner Technology, Cambridge Univ. Press, 2005.
doi: 10.1017/CBO9781107340954. |
[16] |
T. Mora, The FGLM problem and Möller's algorithm on zero-dimensional ideals, in Gröbner, Coding, and Cryptography, Springer, 2009, 379-384. |
show all references
References:
[1] |
W. W. Adams and P. Loustaunau, An Introduction to Gröbner Bases, Amer. Math. Soc., 1994.
doi: 10.1090/gsm/003. |
[2] |
M. Aliasgari, M. R. Sadeghi and D. Panario, Gröbner bases for lattices and an algebraic decoding algorithm, IEEE Trans. Commun., 61 (2013), 1222-1230. |
[3] |
A. H. Banihashemi and I. F. Blake, Trellis complexity and minimal trellis diagrams of lattices, IEEE Trans. Inform. Theory, 44 (1998), 1829-1847.
doi: 10.1109/18.705562. |
[4] |
A. H. Banihashemi and F. R. Kschischang, Tanner graphs for group block codes and lattices: construction and complexity, IEEE Trans. Inform. Theory, 47 (2001), 822-834.
doi: 10.1109/18.910592. |
[5] |
M. Borges-Quintana, M. A. Borges-Trenard and E. Martínez-Moro, A Gröbner representation for linear codes, in Adv. Coding Theory Crypt., World Scientific, 2007, 17-32. |
[6] |
M. Borges-Quintana, M. A. Borges-Trenard and E. Martínez-Moro, On a Gröbner bases structure associated to linear codes, J. Discrete Math. Sci. Crypt., 10 (2007), 151-191.
doi: 10.1080/09720529.2007.10698114. |
[7] |
M. Borges-Quintana, M. A. Borges-Trenard, P. Fitzpatrick and E. Martínez-Moro, On Gröbner basis and combinatorics for binary codes, Appl. Algebra Engin. Commun. Comp., 19 (2008), 393-411.
doi: 10.1007/s00200-008-0080-2. |
[8] |
M. A. Borges-Trenard, M. Borges-Quintana and T. Mora, Computing Gröbner bases by FGLM techniques in a non-commutative setting, J. Symb. Comput., 30 (2000), 429-449.
doi: 10.1006/jsco.1999.0415. |
[9] |
B. Buchberger, An Algorithm for Finding a Basis for the Residue Class Ring of a Zero-dimensional Ideal (in German), Ph.D. thesis, Univ. Innsbruck, Austria, 1965. |
[10] |
B. Buchberger and H. M. Möller, The construction of multivariate polynomials with preassigned zeros, in EUROCAM'82, Marseille, 1982, 24-31. |
[11] |
J. C. Faugere, P. Gianni, D. Lazard and T. Mora, Efficient computation of zerodimensional Gröbner bases by change of ordering, J. Symb. Comput., 16 (1993), 329-344.
doi: 10.1006/jsco.1993.1051. |
[12] |
The GAP Group, GAP-Groups, Algorithms, and Programming, available online at http://www.gap-system.org |
[13] |
S. Lundqvist, Complexity of comparing monomials and two improvements of the BM-algorithm, in Math. Methods Computer Science, Springer, Berlin, 2008, 105-125.
doi: 10.1007/978-3-540-89994-5_9. |
[14] |
I. Márquez-Corbella and E. Martínez-Moro, Algebraic structure of the minimal support codewords set of some linear codes, Adv. Math. Commun., 5 (2011), 233-244.
doi: 10.3934/amc.2011.5.233. |
[15] |
T. Mora, Solving Polynomial Equation Systems II: Macaulay's Paradigm and Gröbner Technology, Cambridge Univ. Press, 2005.
doi: 10.1017/CBO9781107340954. |
[16] |
T. Mora, The FGLM problem and Möller's algorithm on zero-dimensional ideals, in Gröbner, Coding, and Cryptography, Springer, 2009, 379-384. |
[1] |
Hannes Bartz, Antonia Wachter-Zeh. Efficient decoding of interleaved subspace and Gabidulin codes beyond their unique decoding radius using Gröbner bases. Advances in Mathematics of Communications, 2018, 12 (4) : 773-804. doi: 10.3934/amc.2018046 |
[2] |
Amin Sakzad, Mohammad-Reza Sadeghi. On cycle-free lattices with high rate label codes. Advances in Mathematics of Communications, 2010, 4 (4) : 441-452. doi: 10.3934/amc.2010.4.441 |
[3] |
Olof Heden, Martin Hessler. On linear equivalence and Phelps codes. Addendum. Advances in Mathematics of Communications, 2011, 5 (3) : 543-546. doi: 10.3934/amc.2011.5.543 |
[4] |
Michael Braun. On lattices, binary codes, and network codes. Advances in Mathematics of Communications, 2011, 5 (2) : 225-232. doi: 10.3934/amc.2011.5.225 |
[5] |
Arnulf Jentzen, Felix Lindner, Primož Pušnik. On the Alekseev-Gröbner formula in Banach spaces. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 4475-4511. doi: 10.3934/dcdsb.2019128 |
[6] |
Sergio Estrada, J. R. García-Rozas, Justo Peralta, E. Sánchez-García. Group convolutional codes. Advances in Mathematics of Communications, 2008, 2 (1) : 83-94. doi: 10.3934/amc.2008.2.83 |
[7] |
Adrian Korban, Serap Sahinkaya, Deniz Ustun. New type I binary $[72, 36, 12]$ self-dual codes from $M_6(\mathbb{F}_2)G$ - Group matrix rings by a hybrid search technique based on a neighbourhood-virus optimisation algorithm. Advances in Mathematics of Communications, 2022 doi: 10.3934/amc.2022032 |
[8] |
Somphong Jitman, San Ling, Ekkasit Sangwisut. On self-dual cyclic codes of length $p^a$ over $GR(p^2,s)$. Advances in Mathematics of Communications, 2016, 10 (2) : 255-273. doi: 10.3934/amc.2016004 |
[9] |
Jérôme Ducoat, Frédérique Oggier. On skew polynomial codes and lattices from quotients of cyclic division algebras. Advances in Mathematics of Communications, 2016, 10 (1) : 79-94. doi: 10.3934/amc.2016.10.79 |
[10] |
Steven T. Dougherty, Cristina Fernández-Córdoba, Roger Ten-Valls, Bahattin Yildiz. Quaternary group ring codes: Ranks, kernels and self-dual codes. Advances in Mathematics of Communications, 2020, 14 (2) : 319-332. doi: 10.3934/amc.2020023 |
[11] |
Terasan Niyomsataya, Ali Miri, Monica Nevins. Decoding affine reflection group codes with trellises. Advances in Mathematics of Communications, 2012, 6 (4) : 385-400. doi: 10.3934/amc.2012.6.385 |
[12] |
Jamshid Moori, Amin Saeidi. Some designs and codes invariant under the Tits group. Advances in Mathematics of Communications, 2017, 11 (1) : 77-82. doi: 10.3934/amc.2017003 |
[13] |
Cristina García Pillado, Santos González, Victor Markov, Consuelo Martínez, Alexandr Nechaev. New examples of non-abelian group codes. Advances in Mathematics of Communications, 2016, 10 (1) : 1-10. doi: 10.3934/amc.2016.10.1 |
[14] |
Habibul Islam, Om Prakash, Ram Krishna Verma. New quantum codes from constacyclic codes over the ring $ R_{k,m} $. Advances in Mathematics of Communications, 2022, 16 (1) : 17-35. doi: 10.3934/amc.2020097 |
[15] |
Olof Heden, Fabio Pasticci, Thomas Westerbäck. On the existence of extended perfect binary codes with trivial symmetry group. Advances in Mathematics of Communications, 2009, 3 (3) : 295-309. doi: 10.3934/amc.2009.3.295 |
[16] |
Crnković Dean, Vedrana Mikulić Crnković, Bernardo G. Rodrigues. On self-orthogonal designs and codes related to Held's simple group. Advances in Mathematics of Communications, 2018, 12 (3) : 607-628. doi: 10.3934/amc.2018036 |
[17] |
Axel Kohnert, Johannes Zwanzger. New linear codes with prescribed group of automorphisms found by heuristic search. Advances in Mathematics of Communications, 2009, 3 (2) : 157-166. doi: 10.3934/amc.2009.3.157 |
[18] |
Irene I. Bouw, Sabine Kampf. Syndrome decoding for Hermite codes with a Sugiyama-type algorithm. Advances in Mathematics of Communications, 2012, 6 (4) : 419-442. doi: 10.3934/amc.2012.6.419 |
[19] |
Julia Lieb, Raquel Pinto. A decoding algorithm for 2D convolutional codes over the erasure channel. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021031 |
[20] |
Steven T. Dougherty, Joe Gildea, Adrian Korban, Abidin Kaya. Composite constructions of self-dual codes from group rings and new extremal self-dual binary codes of length 68. Advances in Mathematics of Communications, 2020, 14 (4) : 677-702. doi: 10.3934/amc.2020037 |
2021 Impact Factor: 1.015
Tools
Metrics
Other articles
by authors
[Back to Top]