Aperiodic Hamming correlation is an important criterion for evaluating the goodness of frequency hopping (FH) sequence design, while it received little attraction in the literature. In this paper, a construction of FH sequences with optimal aperiodic Hamming correlation by interleaving techniques is presented. Further, a class of one-coincidence FH sequence sets under aperiodic Hamming correlation is proposed. By employing the one-coincidence FH sequence sets, a class of FH sequence sets with optimal aperiodic Hamming correlation is also constructed by interleaving techniques.
Citation: |
[1] |
The Bluetooth Special Interest Group (SIG), Specification of the Bluetooth Systems-Core, available at http://www.bluetooth.com.
![]() |
[2] |
W. Chu and C. J. Colbourn, Optimal frequency-hopping sequences via cyclotomy, IEEE Trans. Inform. Theory, 51 (2005), 1139-1141.
doi: 10.1109/TIT.2004.842708.![]() ![]() ![]() |
[3] |
J. H. Chung, Y. K. Han and K. Yang, New classes of optimal frequency-hopping sequences by interleaving techniques, IEEE Trans. Inform. Theory, 55 (2009), 5783-5791.
doi: 10.1109/TIT.2009.2032742.![]() ![]() ![]() |
[4] |
C. Ding, M. J. Moisio and J. Yuan, Algebraic constructions of optimal frequency-hopping sequences, IEEE Trans. Inform. Theory, 53 (2007), 2606-2610.
doi: 10.1109/TIT.2007.899545.![]() ![]() ![]() |
[5] |
C. Ding, Y. Yang and X. H. Tang, Optimal sets of frequency hopping sequences from linear cyclic codes, IEEE Trans. Inform. Theory, 55 (2010), 3605-3612.
doi: 10.1109/TIT.2010.2048504.![]() ![]() ![]() |
[6] |
C. Ding and J. Yin, Sets of optimal frequency-hopping sequences, IEEE Trans. Inform. Theory, 54 (2008), 3741-3745.
doi: 10.1109/TIT.2008.926410.![]() ![]() ![]() |
[7] |
Y. C. Eun, S. Y. Jin, Y. P. Hong and H. Y. Song, Frequency hopping sequences with optimal partial autocorrelation properties, IEEE Trans. Inform. Theory, 50 (2004), 2438-2442.
doi: 10.1109/TIT.2004.834792.![]() ![]() ![]() |
[8] |
P. Z. Fan and M. Darnell, Sequence Design for Communications Applications, Research Studies Press, London, 1996.
![]() |
[9] |
R. Fuji-Hara, Y. Miao and M. Mishima, Optimal frequency hopping sequences: a combinatorial approach, IEEE Trans. Inform. Theory, 50 (2004), 2408-2420.
doi: 10.1109/TIT.2004.834783.![]() ![]() ![]() |
[10] |
G. Ge, Y. Miao and Z. Yao, Optimal frequency hopping sequences: auto-and cross-correlation properties, IEEE Trans. Inform. Theory, 55 (2009), 867-879.
doi: 10.1109/TIT.2008.2009856.![]() ![]() ![]() |
[11] |
S. W. Golomb and G. Gong, Signal Design for Good Correlation: For Wireless Communication, Cryptography and Radar, Cambridge Univ. Press, Cambridge, 2005.
doi: 10.1017/CBO9780511546907.![]() ![]() ![]() |
[12] |
G. Gong and H. Y. Song, Two-tuple balance of non-binary sequences with ideal two-level autocorrelation, Discrete Appl. Math., 154 (2006), 2590-2598.
doi: 10.1016/j.dam.2006.04.025.![]() ![]() ![]() |
[13] |
T. Helleseth and P. V. Kumar, Sequences with low correlation, in Handbook of Coding Theory, Elsevier, Amsterdam, 1998,1767-1853.
![]() ![]() |
[14] |
A. Lempel and H. Greenberger, Families of sequences with optimal Hamming correlation properties, IEEE Trans. Inform. Theory, 20 (1974), 90-94.
![]() ![]() |
[15] |
X. Liu and D. Y. Peng, Sets of frequency hopping sequences under aperiodic Hamming correlation: upper bound and optimal constructions, Adv. Math. Commun., 8 (2014), 359-373.
doi: 10.3934/amc.2014.8.359.![]() ![]() ![]() |
[16] |
X. Liu, D. Y. Peng and H. Y. Han, Low-hit-zone frequency hopping sequence sets with optimal partial Hamming correlation properties, Des. Codes Cryptogr., 73 (2014), 167-176.
doi: 10.1007/s10623-013-9817-4.![]() ![]() ![]() |
[17] |
X. Liu, D. Y. Peng, X. H. Niu and F. Liu, Lower bounds on the aperiodic Hamming correlations of frequency hopping sequences, IEICE Trans. Fundam. Electr. Commun. Comp. Sci. , E96-A (2013), 1445-1450.
doi: 10.1587/transfun.E96.A.1445.![]() ![]() |
[18] |
X. H. Niu, D. Y. Peng and Z. C. Zhou, Frequency/time hopping sequence sets with optimal partial Hamming correlation properties, Sci. China Ser. F Inf. Sci., 55 (2012), 2207-2215.
doi: 10.1007/s11432-012-4620-9.![]() ![]() ![]() |
[19] |
D. Y. Peng and P. Z. Fan, Lower bounds on the Hamming auto-and cross-correlations of frequency-hopping sequences, IEEE Trans. Inform. Theory, 50 (2004), 2149-2154.
doi: 10.1109/TIT.2004.833362.![]() ![]() ![]() |
[20] |
D. Y. Peng, T. Peng, X. H. Tang and X. H. Niu, A class of optimal frequency hopping sequences based upon the theory of power residues, in Proc. 5th Int. Conf. Seq. Appl. , 2008,188-196.
doi: 10.1007/978-3-540-85912-3_18.![]() ![]() ![]() |
[21] |
P. Udaya and M. U. Siddiqi, Optimal large linear complexity frequency hopping patterns derived from polynomial residue class rings, IEEE Trans. Inform. Theory, 44 (1998), 1492-1503.
doi: 10.1109/18.681324.![]() ![]() ![]() |
[22] |
Z. C. Zhou, X. H. Tang, X. H. Niu and P. Udaya, New classes of frequency-hopping sequences with optimal partial correlation, IEEE Trans. Inform. Theory, 58 (2012), 453-458.
doi: 10.1109/TIT.2011.2167126.![]() ![]() ![]() |