[1]
|
R. Ackerman and N. Aydin, New quinary linear codes from quasi-twisted codes and their duals, Appl. Math. Lett., 24 (2011), 512-515.
doi: 10.1016/j.aml.2010.11.003.
|
[2]
|
N. Aydin and J. M. Murphee, New linear codes from constacyclic codes, J. Franklin Inst., 351 (2014), 1691-1699.
doi: 10.1016/j.jfranklin.2013.11.019.
|
[3]
|
N. Aydin and I. Siap, New quasi-cyclic codes over $\mathbb{F}_5$, Appl. Math. Lett., 15 (2002), 833-836.
doi: 10.1016/S0893-9659(02)00050-2.
|
[4]
|
N. Aydin, I. Siap and D. K. Ray-Chaudhuri, The structure of 1-generator quasi-twisted codes and new linear codes, Des. Codes Crypt., 24 (2001), 313-326.
doi: 10.1023/A:1011283523000.
|
[5]
|
T. S. Baicheva, On the covering radius of ternary negacyclic codes with length up to 26, IEEE Trans. Inform. Theory, 47 (2001), 413-416.
doi: 10.1109/18.904549.
|
[6]
|
E. R. Berlekamp, Algebraic Coding Theory, McGraw-Hill, New York, 1968.
|
[7]
|
E. Chen and N. Aydin, A database of linear codes over $\mathbb{F}_13$ with minimum distance bounds and new quasi-twisted codes from a heuristic search algorithm, J. Algebra Combin. Discrete Struct. Appl., 2 (2015), 1-16.
doi: 10.13069/jacodesmath.36947.
|
[8]
|
E. Chen and N. Aydin, New quasi-twisted codes over $\mathbb{F}_11$-minimum distance bounds and a new database, J. Inform. Optim. Sci., 36 (2015), 129-157.
doi: 10.1080/02522667.2014.961788.
|
[9]
|
Z. Chen, Six new binary quasi-cyclic codes, IEEE Trans. Inform. Theory, 40 (1994), 1666-1667.
doi: 10.1109/18.333888.
|
[10]
|
R. Daskalov and T. A. Gulliver, New quasi-twisted quaternary linear codes, IEEE Trans. Inform. Theory, 46 (2000), 2642-2643.
doi: 10.1109/18.887874.
|
[11]
|
R. Daskalov and P. Hristov, New binary one-generator quasi-cyclic codes, IEEE Trans. Inform. Theory, 49 (2003), 3001-3005.
doi: 10.1109/TIT.2003.819337.
|
[12]
|
R. Daskalov and P. Hristov, New quasi-twisted degenerate ternary linear codes, IEEE Trans. Inform. Theory, 49 (2003), 2259-2263.
doi: 10.1109/TIT.2003.815798.
|
[13]
|
R. Daskalov, P. Hristov and E. Metodieva, New minimum distance bounds for linear codes over GF (5), Discrete Math., 275 (2004), 97-110.
doi: 10.1016/S0012-365X(03)00126-2.
|
[14]
|
M. Grassl, Searching for linear codes with large minimum distance, in Discovering Mathematics with Magma -Reducing the Abstract to the Concrete Springer, Heidelberg, 2006,287-313.
doi: 10.1007/978-3-540-37634-7_13.
|
[15]
|
M. Grassl, Bounds on the minimum distance of linear codes and quantum codes, available at http://www.codetables.de, 2007.
|
[16]
|
M. Grassl and S. Han, Computing extensions of linear codes using a greedy algorithm, in Proc. 2012 IEEE Int. Symp. Inf. Theory (ISIT 2012), Cambridge, 2012,1568-1572.
doi: 10.1109/ISIT.2012.6283537.
|
[17]
|
M. Grassl and G. White, New good linear codes by special puncturings, in Proc. 2004 IEEE Int. Symp. Inf. Theory (ISIT 2004), Chicago, 2004,454.
doi: 10.1109/ISIT.2004.1365491.
|
[18]
|
M. Grassl and G. White, New codes from chains of quasi-cyclic codes, in Proc. 2005 IEEE Int. Symp. Inf. Theory (ISIT 2005), Adelaide, 2005,2095-2099.
doi: 10.1109/ISIT.2005.1523715.
|
[19]
|
T. A. Gulliver and V. K. Bhargava, New good rate (m -1)/pm ternary and quaternary quasi-cyclic codes, Des. Codes Crypt., 7 (1996), 223-233.
doi: 10.1007/BF00124513.
|
[20]
|
F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, NorthHolland, Amsterdam, 1977.
|
[21]
|
Magma computer algebra system web site, http://magma.maths.usyd.edu.au/.
|
[22]
|
E. Prange, Cyclic Error-Correcting Codes in Two Symbols, Technical Report TN-57-103, Air Force Cambridge Research Center, Cambridge, 1957.
|
[23]
|
E. Prange, Some Cyclic Error-Correcting Codes with Simple Decoding Algorithm, Technical Report TN-58-156, Air Force Cambridge Research Center, Cambridge, 1958.
|
[24]
|
A. Vardy, The intractability of computing the minimum distance of a code, IEEE Transactions on Information Theory, 43 (1997), 1757-1766.
doi: 10.1109/18.641542.
|