In this paper, we firstly compute the dual functions of elementary symmetric bent functions. Next, we derive a new secondary construction of bent functions (given with their dual functions) involving symmetric bent functions, leading to a generalization of the well-know Rothaus' construction.
Citation: |
C. Carlet, Boolean functions for cryptography and error correcting codes, in Boolean Models
and Methods in Mathematics, Computer Science, and Engineering (eds. Y. Crama and P.
Hammer), Cambridge Univ. Press, 2010,257-397.
doi: 10.1017/CBO9780511780448.![]() ![]() ![]() |
|
C. Carlet
and S. Mesnager
, Four decades of research on bent functions, Des. Codes Crypt., 78 (2016)
, 5-50.
doi: 10.1007/s10623-015-0145-8.![]() ![]() ![]() |
|
S. Mesnager, Bent Functions: Fundamentals and Results, Springer-Verlag, 2016.
doi: 10.1007/978-3-319-32595-8.![]() ![]() ![]() |
|
O. S. Rothaus
, On "bent" functions, J. Combin. Theory Ser. A, 20 (1976)
, 300-305.
![]() ![]() |
|
S. Mesnager
and F. Zhang
, On constructions of bent, semi-bent and five valued spectrum functions from old bent functions, Adv. Math. Commun., 11 (2017)
, 339-345.
![]() |