A code is said to be complementary dual if it meets its dual trivially. We give a sufficient condition for a special class of additive cyclic codes to be complementary dual.
Citation: |
J. Bierbrauer
, The theory of cyclic codes and a generalization to additive codes, Des. Codes Crypt., 25 (2002)
, 189-206.
doi: 10.1023/A:1013808515797.![]() ![]() ![]() |
|
J. Bierbrauer
and Y. Edel
, Quantum twisted codes, J. Combin. Des., 8 (2000)
, 174-188.
doi: 10.1002/(SICI)1520-6610(2000)8:3<174::AID-JCD3>3.0.CO;2-T.![]() ![]() ![]() |
|
W. Bosma
, J. Cannon
and C. Playoust
, The Magma algebra system Ⅰ. The user language, J. Symb. Comput., 24 (1997)
, 235-265.
doi: 10.1006/jsco.1996.0125.![]() ![]() ![]() |
|
C. Carlet and S. Guilley, Complementary dual codes for counter-measures to side-channel attacks, in Proc. 4th ICMCTA Meeting, Palmela, Portugal, 2014.
![]() |
|
M. Esmaeili
and S. Yari
, On complementary-dual quasi-cyclic codes, Finite Fields Appl., 15 (2009)
, 375-386.
doi: 10.1016/j.ffa.2009.01.002.![]() ![]() ![]() |
|
C. Güneri
, Artin-Schreier curves and weights of two-dimensional cyclic codes, Finite Fields Appl., 10 (2004)
, 481-505.
doi: 10.1016/j.ffa.2003.10.002.![]() ![]() ![]() |
|
C. Güneri
, F. Özbudak
and F. Özdemir
, Hasse-Weil bound for additive cyclic codes, Des. Codes Crypt., 82 (2017)
, 249-263.
doi: 10.1007/s10623-016-0198-3.![]() ![]() ![]() |
|
C. Güneri
, B. Özkaya
and P. Solé
, Quasi-cyclic complementary dual codes, Finite Fields Appl., 42 (2016)
, 67-80.
doi: 10.1016/j.ffa.2016.07.005.![]() ![]() ![]() |
|
J. L. Massey
, Linear codes with complementary duals, Discrete Math., 106-107 (1992)
, 337-342.
doi: 10.1016/0012-365X(92)90563-U.![]() ![]() ![]() |
|
N. Sendrier
, Linear codes with complementary duals meet the Gilbert-Varshamov bound, Discrete Math., 285 (2004)
, 345-347.
doi: 10.1016/j.disc.2004.05.005.![]() ![]() ![]() |
|
X. Yang
and J. L. Massey
, The condition for a cyclic code to have a complementary dual, Discrete Math., 126 (1994)
, 391-393.
doi: 10.1016/0012-365X(94)90283-6.![]() ![]() ![]() |