The concept of parity check matrices of linear binary codes has been extended by Heden [
Citation: |
[1] |
T. Britz, MacWilliams identities and matroid polynomials, Electr. J. Combin., 9 (2002), R19, 16pp.
![]() ![]() |
[2] |
P. Delsarte, Bounds for unrestricted codes, by linear programming, Philips Res. Rep., 27 (1972), 272-289.
![]() ![]() |
[3] |
T. Etzion and A. Vardy, On perfect codes and tilings, problems and solutions, SIAM J. Discr. Math., 11 (1998), 205-223.
doi: 10.1137/S0895480196309171.![]() ![]() ![]() |
[4] |
M. Greferath, An introduction to ring-linear coding theory, in Gröbner Bases, Coding and
Cryptography (eds. M. Sala et al), Springer-Verlag, Berlin, 2009,219–238.
![]() |
[5] |
M. Greferath, A. Nechaev and R. Wisbauer, Finite quasi-Frobenius modules and linear codes, J. Alg. Appl., 3 (2004), 247-272.
doi: 10.1142/S0219498804000873.![]() ![]() ![]() |
[6] |
M. Greferath and S. E. Schmidt, Finite-ring combinatorics and MacWilliams' equivalence theorem, J. Combin. Theory Ser. A, 92 (2000), 17-28.
doi: 10.1006/jcta.1999.3033.![]() ![]() ![]() |
[7] |
A. R. Hammons, Jr., P. V. Kumar, A. R. Calderbank, N. J. A. Sloane and P. Solé, The $\mathbb Z_4$-linearity of Kerdock, Preparata, Goethals, and related codes, IEEE Trans. Inf. Theory, 40 (1994), 301-319.
doi: 10.1109/18.312154.![]() ![]() ![]() |
[8] |
O. Heden, A full rank perfect code of length 31, Des. Codes Crypt., 38 (2006), 125-129.
doi: 10.1007/s10623-005-5665-1.![]() ![]() ![]() |
[9] |
O. Heden, On perfect $p$-ary codes of length p+1, Des. Codes Crypt., 46 (2008), 45-56.
doi: 10.1007/s10623-007-9133-y.![]() ![]() ![]() |
[10] |
O. Heden, Perfect codes from the dual point of view Ⅰ, Discr. Math., 308 (2008), 6141-6156.
doi: 10.1016/j.disc.2007.11.037.![]() ![]() ![]() |
[11] |
M. Hessler, Perfect codes as isomorphic spaces, Discr. Math., 306 (2006), 1981-1987.
doi: 10.1016/j.disc.2006.03.039.![]() ![]() ![]() |
[12] |
T. Honold, Characterization of finite Frobenius rings, Arch. Math., 76 (2001), 406-415.
doi: 10.1007/PL00000451.![]() ![]() ![]() |
[13] |
T. Honold and A. A. Nechaev, Weighted modules and linear representations of codes, Probl. Inf. Transm., 35 (1999), 205-223.
![]() ![]() |
[14] |
T. Honold and I. Landjev, MacWilliams identities for linear codes over finite Frobenius rings,
in Finite Fields and Applications (eds. D. Jungnickel et al), Springer-Verlag, Berlin, 2001,
276–292.
![]() ![]() |
[15] |
F. J. MacWilliams, A theorem on the distribution of weights in a systematic code, Bell Sys. Tech. J., 42 (1963), 79-94.
doi: 10.1002/j.1538-7305.1963.tb04003.x.![]() ![]() ![]() |
[16] |
F. J. MacWilliams and N. J. A. Sloane,
The Theory of Error-Correcting Codes North-Holland, Amsterdam, 1977.
![]() ![]() |
[17] |
A. A. Nechaev, Finite principal ideal rings, Mat. Sbornik, 20 (1973), 364-382.
![]() |
[18] |
A. A. Nechaev, Kerdock code in a cyclic form, Discr. Math. Appl., 1 (1991), 365-384.
doi: 10.1515/dma.1991.1.4.365.![]() ![]() ![]() |
[19] |
R. Y. Sharp,
Steps in Commutative Algebra 2nd edition, Cambridge Univ. Press, Cambridge, 2000.
doi: 10.1017/CBO9780511626265.![]() ![]() ![]() |
[20] |
A. Terras,
Fourier Analysis on Finite Groups and Applications Cambridge Univ. Press, Cambridge, 1999.
doi: 10.1017/CBO9780511626265.![]() ![]() ![]() |
[21] |
M. Villanueva,
Codis no lineals en Magma: construcció de codis perfectes Universitat Autónoma de Barcelona, 2009.
![]() |
[22] |
M. Villanueva, F. Zeng and J. Pujol, Efficient representation of binary nonlinear codes: constructions and minimum distance computation, Des. Codes Crypt., 76 (2015), 3-21.
doi: 10.1007/s10623-014-0028-4.![]() ![]() ![]() |
[23] |
J. A. Wood, Duality for modules over finite rings and applications to coding theory, Amer. J. Math., 121 (1999), 555-575.
![]() ![]() |
[24] |
J. A. Wood, Code equivalence characterizes finite Frobenius rings, Proc. Amer. Math. Soc., 136 (2008), 699-706.
doi: 10.1090/S0002-9939-07-09164-2.![]() ![]() ![]() |