American Institute of Mathematical Sciences

August  2017, 11(3): 471-480. doi: 10.3934/amc.2017039

The weight distributions of constacyclic codes

 1 School of Mathematics and Statistics, Zaozhuang University, Zaozhuang, Shandong 277160, China 2 State Key Laboratory of Cryptology, P. O. Box 5159, Beijing 100878, China 3 State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of Sciences, Beijing 100093, China 4 Department of Mathematics, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 211100, China 5 Science and Technology on Information Assurance Laboratory, Beijing 100072, China

Received  June 2015 Published  August 2017

Fund Project: The paper was supported by National Natural Science Foundation of China under Grants 11601475,61772015 and Foundation of Science and Technology on Information Assurance Laboratory under Grants KJ-15-009,6142112010202.

Let $\Bbb F_q$ be a finite field with $q$ elements. Suppose that $a, λ∈ \Bbb F_q^*$, $a^n=λ$ with $n|(q-1)$. In this paper, we determine the weight distribution of a class of $λ$-constacyclic codes of length $nm$ with the parity check polynomial $h(x)=(x^m-aξ^{st})(x^m-aξ^{s(t+1)})...(x^m-aξ^{s(t+r-1)})$ and $n>(r-1)m$, where $s,t, r$ are positive integers and $ξ∈ \Bbb F_q$ is a primitive n-th root of unity. Moreover, we give the weight distributions of $λ$-constacyclic codes of length $nm$ explicitly in several cases: (1) $r=1$, $n>1$; (2) $r=2$, $m=2$ and $n>2$; (3) $r=2$, $m=3$ and $n>3$; (4) $r=3$, $m=2$ and $n>4$.

Citation: Fengwei Li, Qin Yue, Fengmei Liu. The weight distributions of constacyclic codes. Advances in Mathematics of Communications, 2017, 11 (3) : 471-480. doi: 10.3934/amc.2017039
References:
 [1] N. Boston and G. McGuire, The weight distribution of cyclic codes with two zeros and zeta functions, J. Symb. Comput., 45 (2010), 723-733.  doi: 10.1016/j.jsc.2010.03.007.  Google Scholar [2] P. Charpin, Cyclic codes with few weights and Niho exponents, J. Combin. Theory Ser. A, 108 (2004), 247-259.  doi: 10.1016/j.jcta.2004.07.001.  Google Scholar [3] B. Chen, H. Q. Dinh and H. Liu, Repeated-root constacyclic codes of length $\ell p^s$ and their duals, Discr. Appl. Math., 177 (2014), 60-70.  doi: 10.1016/j.disc.2013.01.024.  Google Scholar [4] B. Chen, H. Q. Dinh and H. Liu, Repeated-root constacyclic codes of length $2\ell^mp^n$, Finite Fields Appl., 33 (2015), 137-159.  doi: 10.1016/j.ffa.2014.11.006.  Google Scholar [5] B. Chen, Y. Fan, L. Lin and H. Liu, Constacyclic codes over finite fields, Finite Fields Appl., 18 (2012), 1217-1231.   Google Scholar [6] C. Ding, The weight distributions of some irreducible cyclic codes, IEEE Trans. Inf. Theory, 55 (2009), 955-960.  doi: 10.1109/TIT.2008.2011511.  Google Scholar [7] C. Ding, Y. Liu, C. Ma and L. Zeng, The weight distributions of the duals of cyclic codes with two zeros, IEEE Trans. Inf. Theory, 57 (2011), 8000-8006.  doi: 10.1109/TIT.2011.2165314.  Google Scholar [8] C. Ding and J. Yang, Hamming weights in irreducible cyclic codes, Discr. Math., 313 (2013), 434-446.  doi: 10.1016/j.disc.2012.11.009.  Google Scholar [9] H. Q. Dinh, On the linear ordering of some classes of negacyclic and cyclic codes and their distance distributions, Finite Fields Appl., 14 (2008), 22-40.  doi: 10.1016/j.ffa.2007.07.001.  Google Scholar [10] H. Q. Dinh, Repeated-root constacyclic codes of length $2p^s$, Finite Fields Appl., 18 (2012), 133-143.  doi: 10.1016/j.ffa.2011.07.003.  Google Scholar [11] H. Q. Dinh, Structure of repeated-root constacyclic codes of length $3p^s$ and their duals, Discr. Math., 313 (2013), 983-991.  doi: 10.1016/j.disc.2013.01.024.  Google Scholar [12] C. Li and Q. Yue, Weight distribution of two classes of cyclic codes with respect to two distinct order elements, IEEE Trans. Inf. Theory, 60 (2014), 296-303.  doi: 10.1109/TIT.2013.2287211.  Google Scholar [13] C. Li, Q. Yue and F. Li, Hamming weights of the duals of cyclic codes with two zeros, IEEE Trans. Inf. Theory, 60 (2014), 3895-3902.  doi: 10.1109/TIT.2014.2317785.  Google Scholar [14] C. Li, Q. Yue and F. Li, Weight distributions of cyclic codes with respect to pairwise coprime order elements, Finite Fields Appl., 28 (2014), 94-114.  doi: 10.1016/j.ffa.2014.01.009.  Google Scholar [15] C. Li, X. Zeng and L. Hu, A class of binary cyclic codes with five weights}, Sci. China Math., 53 (2010), 3279-3286.  doi: 10.1007/s11425-010-4062-z.  Google Scholar [16] R. Lidl and H. Niederreiter, Finite Fields Cambridge Univ. Press, Cambridge, 2008.  Google Scholar [17] J. Luo and K. Feng, On the weight distribution of two classes of cyclic codes, IEEE Trans. Inf. Theory, 54 (2008), 5332-5344.  doi: 10.1109/TIT.2008.2006424.  Google Scholar [18] J. Luo, Y. Tang and H. Wang, Cyclic codes and sequences: the generalized Kasami case, IEEE Trans. Inf. Theory, 56 (2010), 2130-2142.  doi: 10.1109/TIT.2010.2043783.  Google Scholar [19] C. Ma, L. Zeng, Y. Liu, D. Feng and C. Ding, The weight enumerator of a class of cyclic codes, IEEE Trans. Inf. Theory, 57 (2011), 397-402.  doi: 10.1109/TIT.2010.2090272.  Google Scholar [20] G. McGuire, On three weights in cyclic codes with two zeros, Finite Fields Appl., 10 (2004), 97-104.  doi: 10.1016/S1071-5797(03)00045-5.  Google Scholar [21] G. Vega, The weight distribution of an extended class of reducible cyclic codes, IEEE Trans. Inf. Theory, 58 (2012), 4862-4869.  doi: 10.1109/TIT.2012.2193376.  Google Scholar [22] B. Wang, C. Tang, Y. Qi, Y. Yang and M. Xu, The weight distributions of cyclic codes and elliptic curves, IEEE Trans. Inf. Theory, 58 (2012), 7253-7259.  doi: 10.1109/TIT.2012.2210386.  Google Scholar [23] X. Wang, D. Zheng, L. Hu and X. Zeng, The weight distributions of two classes of binary cyclic codes, Finite Fields Appl., 34 (2015), 192-207.  doi: 10.1016/j.ffa.2015.01.012.  Google Scholar [24] J. Wolfmann, Weight distributions of some binary primitive cyclic codes, IEEE Trans. Inf. Theory, 40 (2004), 2068-2071.  doi: 10.1109/18.340482.  Google Scholar [25] M. Xiong, The weight distributions of a class of cyclic codes, Finite Fields Appl., 18 (2012), 933-945.  doi: 10.1016/j.ffa.2012.06.001.  Google Scholar [26] J. Yang, M. Xiong and C. Ding, Weight distribution of a class of cyclic codes with arbitrary number of zeros, IEEE Trans. Inf. Theory, 59 (2013), 5985-5993.  doi: 10.1109/TIT.2013.2266731.  Google Scholar [27] J. Yuan, C. Carlet and C. Ding, The weight distribution of a class of linear codes from perfect nonlinear functions, IEEE Trans. Inf. Theory, 52 (2006), 712-717.  doi: 10.1109/TIT.2005.862125.  Google Scholar [28] X. Zeng, L. Hu, W. Jiang, Q. Yue and X. Cao, The weight distribution of a class of p-ary cyclic codes, Finite Fields Appl., 16 (2010), 56-73.  doi: 10.1016/j.ffa.2012.06.001.  Google Scholar [29] Z. Zhou and C. Ding, A class of three-weight cyclic codes, Finite Fields Appl., 25 (2014), 79-93.  doi: 10.1016/j.ffa.2013.08.005.  Google Scholar [30] Z. Zhou, C. Ding, J. Luo and A. Zhang, A family of five-weight cyclic codes and their weight enumerators, IEEE Trans. Inf. Theory, 59 (2013), 6674-6682.  doi: 10.1109/TIT.2013.2267722.  Google Scholar [31] D. Zheng, X. Wang, L. Hu and X. Zeng, The weight distributions of two classes of p-ary cyclic codes, Finite Fields Appl., 29 (2014), 202-224.  doi: 10.1016/j.ffa.2014.05.001.  Google Scholar [32] D. Zheng, X. Wang, X. Zeng and L. Hu, The weight distributions of a family of p-ary cyclic codes, Des. Codes Crypt., 75 (2015), 263-275.  doi: 10.1007/s10623-013-9908-2.  Google Scholar [33] X. Zhu, Q. Yue and L. Hu, Weight distribution of cyclic codes of length $tl^m$, Discr. Math., 338 (2015), 844-856.   Google Scholar

show all references

References:
 [1] N. Boston and G. McGuire, The weight distribution of cyclic codes with two zeros and zeta functions, J. Symb. Comput., 45 (2010), 723-733.  doi: 10.1016/j.jsc.2010.03.007.  Google Scholar [2] P. Charpin, Cyclic codes with few weights and Niho exponents, J. Combin. Theory Ser. A, 108 (2004), 247-259.  doi: 10.1016/j.jcta.2004.07.001.  Google Scholar [3] B. Chen, H. Q. Dinh and H. Liu, Repeated-root constacyclic codes of length $\ell p^s$ and their duals, Discr. Appl. Math., 177 (2014), 60-70.  doi: 10.1016/j.disc.2013.01.024.  Google Scholar [4] B. Chen, H. Q. Dinh and H. Liu, Repeated-root constacyclic codes of length $2\ell^mp^n$, Finite Fields Appl., 33 (2015), 137-159.  doi: 10.1016/j.ffa.2014.11.006.  Google Scholar [5] B. Chen, Y. Fan, L. Lin and H. Liu, Constacyclic codes over finite fields, Finite Fields Appl., 18 (2012), 1217-1231.   Google Scholar [6] C. Ding, The weight distributions of some irreducible cyclic codes, IEEE Trans. Inf. Theory, 55 (2009), 955-960.  doi: 10.1109/TIT.2008.2011511.  Google Scholar [7] C. Ding, Y. Liu, C. Ma and L. Zeng, The weight distributions of the duals of cyclic codes with two zeros, IEEE Trans. Inf. Theory, 57 (2011), 8000-8006.  doi: 10.1109/TIT.2011.2165314.  Google Scholar [8] C. Ding and J. Yang, Hamming weights in irreducible cyclic codes, Discr. Math., 313 (2013), 434-446.  doi: 10.1016/j.disc.2012.11.009.  Google Scholar [9] H. Q. Dinh, On the linear ordering of some classes of negacyclic and cyclic codes and their distance distributions, Finite Fields Appl., 14 (2008), 22-40.  doi: 10.1016/j.ffa.2007.07.001.  Google Scholar [10] H. Q. Dinh, Repeated-root constacyclic codes of length $2p^s$, Finite Fields Appl., 18 (2012), 133-143.  doi: 10.1016/j.ffa.2011.07.003.  Google Scholar [11] H. Q. Dinh, Structure of repeated-root constacyclic codes of length $3p^s$ and their duals, Discr. Math., 313 (2013), 983-991.  doi: 10.1016/j.disc.2013.01.024.  Google Scholar [12] C. Li and Q. Yue, Weight distribution of two classes of cyclic codes with respect to two distinct order elements, IEEE Trans. Inf. Theory, 60 (2014), 296-303.  doi: 10.1109/TIT.2013.2287211.  Google Scholar [13] C. Li, Q. Yue and F. Li, Hamming weights of the duals of cyclic codes with two zeros, IEEE Trans. Inf. Theory, 60 (2014), 3895-3902.  doi: 10.1109/TIT.2014.2317785.  Google Scholar [14] C. Li, Q. Yue and F. Li, Weight distributions of cyclic codes with respect to pairwise coprime order elements, Finite Fields Appl., 28 (2014), 94-114.  doi: 10.1016/j.ffa.2014.01.009.  Google Scholar [15] C. Li, X. Zeng and L. Hu, A class of binary cyclic codes with five weights}, Sci. China Math., 53 (2010), 3279-3286.  doi: 10.1007/s11425-010-4062-z.  Google Scholar [16] R. Lidl and H. Niederreiter, Finite Fields Cambridge Univ. Press, Cambridge, 2008.  Google Scholar [17] J. Luo and K. Feng, On the weight distribution of two classes of cyclic codes, IEEE Trans. Inf. Theory, 54 (2008), 5332-5344.  doi: 10.1109/TIT.2008.2006424.  Google Scholar [18] J. Luo, Y. Tang and H. Wang, Cyclic codes and sequences: the generalized Kasami case, IEEE Trans. Inf. Theory, 56 (2010), 2130-2142.  doi: 10.1109/TIT.2010.2043783.  Google Scholar [19] C. Ma, L. Zeng, Y. Liu, D. Feng and C. Ding, The weight enumerator of a class of cyclic codes, IEEE Trans. Inf. Theory, 57 (2011), 397-402.  doi: 10.1109/TIT.2010.2090272.  Google Scholar [20] G. McGuire, On three weights in cyclic codes with two zeros, Finite Fields Appl., 10 (2004), 97-104.  doi: 10.1016/S1071-5797(03)00045-5.  Google Scholar [21] G. Vega, The weight distribution of an extended class of reducible cyclic codes, IEEE Trans. Inf. Theory, 58 (2012), 4862-4869.  doi: 10.1109/TIT.2012.2193376.  Google Scholar [22] B. Wang, C. Tang, Y. Qi, Y. Yang and M. Xu, The weight distributions of cyclic codes and elliptic curves, IEEE Trans. Inf. Theory, 58 (2012), 7253-7259.  doi: 10.1109/TIT.2012.2210386.  Google Scholar [23] X. Wang, D. Zheng, L. Hu and X. Zeng, The weight distributions of two classes of binary cyclic codes, Finite Fields Appl., 34 (2015), 192-207.  doi: 10.1016/j.ffa.2015.01.012.  Google Scholar [24] J. Wolfmann, Weight distributions of some binary primitive cyclic codes, IEEE Trans. Inf. Theory, 40 (2004), 2068-2071.  doi: 10.1109/18.340482.  Google Scholar [25] M. Xiong, The weight distributions of a class of cyclic codes, Finite Fields Appl., 18 (2012), 933-945.  doi: 10.1016/j.ffa.2012.06.001.  Google Scholar [26] J. Yang, M. Xiong and C. Ding, Weight distribution of a class of cyclic codes with arbitrary number of zeros, IEEE Trans. Inf. Theory, 59 (2013), 5985-5993.  doi: 10.1109/TIT.2013.2266731.  Google Scholar [27] J. Yuan, C. Carlet and C. Ding, The weight distribution of a class of linear codes from perfect nonlinear functions, IEEE Trans. Inf. Theory, 52 (2006), 712-717.  doi: 10.1109/TIT.2005.862125.  Google Scholar [28] X. Zeng, L. Hu, W. Jiang, Q. Yue and X. Cao, The weight distribution of a class of p-ary cyclic codes, Finite Fields Appl., 16 (2010), 56-73.  doi: 10.1016/j.ffa.2012.06.001.  Google Scholar [29] Z. Zhou and C. Ding, A class of three-weight cyclic codes, Finite Fields Appl., 25 (2014), 79-93.  doi: 10.1016/j.ffa.2013.08.005.  Google Scholar [30] Z. Zhou, C. Ding, J. Luo and A. Zhang, A family of five-weight cyclic codes and their weight enumerators, IEEE Trans. Inf. Theory, 59 (2013), 6674-6682.  doi: 10.1109/TIT.2013.2267722.  Google Scholar [31] D. Zheng, X. Wang, L. Hu and X. Zeng, The weight distributions of two classes of p-ary cyclic codes, Finite Fields Appl., 29 (2014), 202-224.  doi: 10.1016/j.ffa.2014.05.001.  Google Scholar [32] D. Zheng, X. Wang, X. Zeng and L. Hu, The weight distributions of a family of p-ary cyclic codes, Des. Codes Crypt., 75 (2015), 263-275.  doi: 10.1007/s10623-013-9908-2.  Google Scholar [33] X. Zhu, Q. Yue and L. Hu, Weight distribution of cyclic codes of length $tl^m$, Discr. Math., 338 (2015), 844-856.   Google Scholar
Weight distribution
 Weight Frequency 0 1 $n-1$ $2n(q-1)$ $n$ $2(q-1)(q+1-n)$ $2n-2$ $n^2(q-1)^2$ $2n-1$ $2n(q-1)^2(q+1-n)$ $2n$ $(q-1)^2(q+1-n)^2$
 Weight Frequency 0 1 $n-1$ $2n(q-1)$ $n$ $2(q-1)(q+1-n)$ $2n-2$ $n^2(q-1)^2$ $2n-1$ $2n(q-1)^2(q+1-n)$ $2n$ $(q-1)^2(q+1-n)^2$
Weight distribution
 Weight Frequency 0 1 $n-1$ $3n(q-1)$ $n$ $3(q-1)(q+1-n)$ $2n-2$ $3n^2(q-1)^2$ $2n-1$ $6n(q-1)^2(q+1-n)$ $2n$ $3(q-1)^2(q+1-n)^2$ $3n-3$ $n^3(q-1)^3$ $3n-2$ $3n^2(q-1)^3(q+1-n)$ $3n-1$ $3n(q-1)^3(q+1-n)^2$ $3n$ $(q-1)^3(q+1-n)^3$
 Weight Frequency 0 1 $n-1$ $3n(q-1)$ $n$ $3(q-1)(q+1-n)$ $2n-2$ $3n^2(q-1)^2$ $2n-1$ $6n(q-1)^2(q+1-n)$ $2n$ $3(q-1)^2(q+1-n)^2$ $3n-3$ $n^3(q-1)^3$ $3n-2$ $3n^2(q-1)^3(q+1-n)$ $3n-1$ $3n(q-1)^3(q+1-n)^2$ $3n$ $(q-1)^3(q+1-n)^3$
Weight distribution
 Weight Frequency 0 1 $n-2$ $n(n-1)(q-1)$ $n-1$ $2n(q-1)(q-n+2)$ $n$ $2(q-1)^3-2(n-3)(q-1)^2+(n-2)(n-3)(q-1)$ $2n-4$ $\frac {n^2(n-1)^2}4 (q-1)^2$ $2n-3$ $n^2(q-1)^2(n-1)(q-n+2)$ $2n-2$ $n^2(q-1)^2(q-n+2)^2+n(n-1)(q-1)^2[(q-1)^2-(n-3)(q-1)+C_{n-2}^2]$ $2n-1$ $2n(q-n+2)(q-1)^4-2n(n-3)(q-n+2)(q-1)^3$ $+n(n-2)(n-3)(q-n+2)(q-1)^2$ $2n$ $(q-1)^6+(n-3)^2(q-1)^4+\frac {(n-2)^2(n-3)^2}4 (q-1)^2+(n-2)(n-3)(q-1)^4$ $-2(n-3)(q-1)^5-(n-2)(n-3)^2(q-1)^3$
 Weight Frequency 0 1 $n-2$ $n(n-1)(q-1)$ $n-1$ $2n(q-1)(q-n+2)$ $n$ $2(q-1)^3-2(n-3)(q-1)^2+(n-2)(n-3)(q-1)$ $2n-4$ $\frac {n^2(n-1)^2}4 (q-1)^2$ $2n-3$ $n^2(q-1)^2(n-1)(q-n+2)$ $2n-2$ $n^2(q-1)^2(q-n+2)^2+n(n-1)(q-1)^2[(q-1)^2-(n-3)(q-1)+C_{n-2}^2]$ $2n-1$ $2n(q-n+2)(q-1)^4-2n(n-3)(q-n+2)(q-1)^3$ $+n(n-2)(n-3)(q-n+2)(q-1)^2$ $2n$ $(q-1)^6+(n-3)^2(q-1)^4+\frac {(n-2)^2(n-3)^2}4 (q-1)^2+(n-2)(n-3)(q-1)^4$ $-2(n-3)(q-1)^5-(n-2)(n-3)^2(q-1)^3$
 [1] Eimear Byrne. On the weight distribution of codes over finite rings. Advances in Mathematics of Communications, 2011, 5 (2) : 395-406. doi: 10.3934/amc.2011.5.395 [2] Masaaki Harada, Ethan Novak, Vladimir D. Tonchev. The weight distribution of the self-dual $[128,64]$ polarity design code. Advances in Mathematics of Communications, 2016, 10 (3) : 643-648. doi: 10.3934/amc.2016032 [3] Alexander Barg, Arya Mazumdar, Gilles Zémor. Weight distribution and decoding of codes on hypergraphs. Advances in Mathematics of Communications, 2008, 2 (4) : 433-450. doi: 10.3934/amc.2008.2.433 [4] Alexander A. Davydov, Stefano Marcugini, Fernanda Pambianco. On the weight distribution of the cosets of MDS codes. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021042 [5] Nigel Boston, Jing Hao. The weight distribution of quasi-quadratic residue codes. Advances in Mathematics of Communications, 2018, 12 (2) : 363-385. doi: 10.3934/amc.2018023 [6] Aicha Batoul, Kenza Guenda, T. Aaron Gulliver. Some constacyclic codes over finite chain rings. Advances in Mathematics of Communications, 2016, 10 (4) : 683-694. doi: 10.3934/amc.2016034 [7] Somphong Jitman, San Ling, Patanee Udomkavanich. Skew constacyclic codes over finite chain rings. Advances in Mathematics of Communications, 2012, 6 (1) : 39-63. doi: 10.3934/amc.2012.6.39 [8] Gerardo Vega, Jesús E. Cuén-Ramos. The weight distribution of families of reducible cyclic codes through the weight distribution of some irreducible cyclic codes. Advances in Mathematics of Communications, 2020, 14 (3) : 525-533. doi: 10.3934/amc.2020059 [9] Ricardo A. Podestá, Denis E. Videla. The weight distribution of irreducible cyclic codes associated with decomposable generalized Paley graphs. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021002 [10] Lanqiang Li, Shixin Zhu, Li Liu. The weight distribution of a class of p-ary cyclic codes and their applications. Advances in Mathematics of Communications, 2019, 13 (1) : 137-156. doi: 10.3934/amc.2019008 [11] Denis S. Krotov, Patric R. J.  Östergård, Olli Pottonen. Non-existence of a ternary constant weight $(16,5,15;2048)$ diameter perfect code. Advances in Mathematics of Communications, 2016, 10 (2) : 393-399. doi: 10.3934/amc.2016013 [12] Thomas Gauthier, Gabriel Vigny. Distribution of postcritically finite polynomials Ⅱ: Speed of convergence. Journal of Modern Dynamics, 2017, 11: 57-98. doi: 10.3934/jmd.2017004 [13] Shudi Yang, Xiangli Kong, Xueying Shi. Complete weight enumerators of a class of linear codes over finite fields. Advances in Mathematics of Communications, 2021, 15 (1) : 99-112. doi: 10.3934/amc.2020045 [14] Ekkasit Sangwisut, Somphong Jitman, Patanee Udomkavanich. Constacyclic and quasi-twisted Hermitian self-dual codes over finite fields. Advances in Mathematics of Communications, 2017, 11 (3) : 595-613. doi: 10.3934/amc.2017045 [15] Somphong Jitman, Ekkasit Sangwisut. The average dimension of the Hermitian hull of constacyclic codes over finite fields of square order. Advances in Mathematics of Communications, 2018, 12 (3) : 451-463. doi: 10.3934/amc.2018027 [16] Bara Kim, Jeongsim Kim. Explicit solution for the stationary distribution of a discrete-time finite buffer queue. Journal of Industrial & Management Optimization, 2016, 12 (3) : 1121-1133. doi: 10.3934/jimo.2016.12.1121 [17] Grégory Berhuy, Jean Fasel, Odile Garotta. Rank weights for arbitrary finite field extensions. Advances in Mathematics of Communications, 2021, 15 (4) : 575-587. doi: 10.3934/amc.2020083 [18] María Chara, Ricardo A. Podestá, Ricardo Toledano. The conorm code of an AG-code. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021018 [19] Laura Aquilanti, Simone Cacace, Fabio Camilli, Raul De Maio. A Mean Field Games model for finite mixtures of Bernoulli and categorical distributions. Journal of Dynamics & Games, 2021, 8 (1) : 35-59. doi: 10.3934/jdg.2020033 [20] Angela Aguglia, Antonio Cossidente, Giuseppe Marino, Francesco Pavese, Alessandro Siciliano. Orbit codes from forms on vector spaces over a finite field. Advances in Mathematics of Communications, 2022, 16 (1) : 135-155. doi: 10.3934/amc.2020105

2020 Impact Factor: 0.935