-
Previous Article
A new nonbinary sequence family with low correlation and large size
- AMC Home
- This Issue
- Next Article
Duursma's reduced polynomial
Section of Algebra, Department of Mathematics and Informatics, Kliment Ohridski University of Sofia, James Bouchier Blvd., Sofia 1164, Bulgaria |
The weight distribution $\{ \mathcal{W}_C^{(w)} \} _{w=0} ^n$ of a linear code $C \subset {\mathbb F}_q^n$ is put in an explicit bijective correspondence with Duursma's reduced polynomial $D_C(t) ∈ {\mathbb Q}[t]$ of $C$. We prove that the Riemann Hypothesis Analogue for a linear code $C$ requires the formal self-duality of $C$. Duursma's reduced polynomial $D_F(t) ∈ {\mathbb Z}[t]$ of the function field $F = {\mathbb F}_q(X)$ of a curve $X$ of genus $g$ over ${\mathbb F}_q$ is shown to provide a generating function $\frac{D_F(t)}{(1-t)(1-qt)} = \sum\limits _{i=0} ^{∞} \mathcal{B}_i t^{i}$ for the numbers $\mathcal{B}_i$ of the effective divisors of degree $i ≥0$ of a virtual function field of a curve of genus $g-1$ over ${\mathbb F}_q$.
References:
[1] |
S. Dodunekov and I. Landgev,
Near MDS-codes, Journal of Geometry, 54 (1995), 30-43.
doi: 10.1007/BF01222850. |
[2] |
I. Duursma,
Weight distribution of geometric Goppa codes, Transections of the American Mathematical Society, 351 (1999), 3609-3639.
doi: 10.1090/S0002-9947-99-02179-0. |
[3] |
I. Duursma,
From weight enumerators to zeta functions, Discrete Applied Mathematics, 111 (2001), 55-73.
doi: 10.1016/S0166-218X(00)00344-9. |
[4] |
I. Duursma, Combinatorics of the two-variable zeta function in Finite Fields and Applications, Lecture Notes in Computational Sciences, Springer, Berlin, 2948 (2004), 109-136. |
[5] |
D. Ch. Kim and J. Y. Hyun,
A Riemann hypothesis analogue for near-MDS codes, Discrete Applied Mathematics, 160 (2012), 2440-2444.
doi: 10.1016/j.dam.2012.07.008. |
[6] |
H. Niederreiter and Ch. Xing,
Algebraic Geometry in Coding Theory and Cryptography Princeton University Press, 2009. |
show all references
References:
[1] |
S. Dodunekov and I. Landgev,
Near MDS-codes, Journal of Geometry, 54 (1995), 30-43.
doi: 10.1007/BF01222850. |
[2] |
I. Duursma,
Weight distribution of geometric Goppa codes, Transections of the American Mathematical Society, 351 (1999), 3609-3639.
doi: 10.1090/S0002-9947-99-02179-0. |
[3] |
I. Duursma,
From weight enumerators to zeta functions, Discrete Applied Mathematics, 111 (2001), 55-73.
doi: 10.1016/S0166-218X(00)00344-9. |
[4] |
I. Duursma, Combinatorics of the two-variable zeta function in Finite Fields and Applications, Lecture Notes in Computational Sciences, Springer, Berlin, 2948 (2004), 109-136. |
[5] |
D. Ch. Kim and J. Y. Hyun,
A Riemann hypothesis analogue for near-MDS codes, Discrete Applied Mathematics, 160 (2012), 2440-2444.
doi: 10.1016/j.dam.2012.07.008. |
[6] |
H. Niederreiter and Ch. Xing,
Algebraic Geometry in Coding Theory and Cryptography Princeton University Press, 2009. |
[1] |
Fernando Hernando, Diego Ruano. New linear codes from matrix-product codes with polynomial units. Advances in Mathematics of Communications, 2010, 4 (3) : 363-367. doi: 10.3934/amc.2010.4.363 |
[2] |
Eugenia N. Petropoulou, Panayiotis D. Siafarikas. Polynomial solutions of linear partial differential equations. Communications on Pure and Applied Analysis, 2009, 8 (3) : 1053-1065. doi: 10.3934/cpaa.2009.8.1053 |
[3] |
Irene Márquez-Corbella, Edgar Martínez-Moro, Emilio Suárez-Canedo. On the ideal associated to a linear code. Advances in Mathematics of Communications, 2016, 10 (2) : 229-254. doi: 10.3934/amc.2016003 |
[4] |
Tonghui Zhang, Hong Lu, Shudi Yang. Two-weight and three-weight linear codes constructed from Weil sums. Mathematical Foundations of Computing, 2022, 5 (2) : 129-144. doi: 10.3934/mfc.2021041 |
[5] |
John Fogarty. On Noether's bound for polynomial invariants of a finite group. Electronic Research Announcements, 2001, 7: 5-7. |
[6] |
Jaume Llibre, Yilei Tang. Limit cycles of discontinuous piecewise quadratic and cubic polynomial perturbations of a linear center. Discrete and Continuous Dynamical Systems - B, 2019, 24 (4) : 1769-1784. doi: 10.3934/dcdsb.2018236 |
[7] |
Elimhan N. Mahmudov. Optimal control of evolution differential inclusions with polynomial linear differential operators. Evolution Equations and Control Theory, 2019, 8 (3) : 603-619. doi: 10.3934/eect.2019028 |
[8] |
W. Cary Huffman. Self-dual $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes with an automorphism of prime order. Advances in Mathematics of Communications, 2013, 7 (1) : 57-90. doi: 10.3934/amc.2013.7.57 |
[9] |
Petr Lisoněk, Layla Trummer. Algorithms for the minimum weight of linear codes. Advances in Mathematics of Communications, 2016, 10 (1) : 195-207. doi: 10.3934/amc.2016.10.195 |
[10] |
David Gómez-Ullate, Niky Kamran, Robert Milson. Structure theorems for linear and non-linear differential operators admitting invariant polynomial subspaces. Discrete and Continuous Dynamical Systems, 2007, 18 (1) : 85-106. doi: 10.3934/dcds.2007.18.85 |
[11] |
Daniele Boffi, Franco Brezzi, Michel Fortin. Reduced symmetry elements in linear elasticity. Communications on Pure and Applied Analysis, 2009, 8 (1) : 95-121. doi: 10.3934/cpaa.2009.8.95 |
[12] |
Somphong Jitman, San Ling, Ekkasit Sangwisut. On self-dual cyclic codes of length $p^a$ over $GR(p^2,s)$. Advances in Mathematics of Communications, 2016, 10 (2) : 255-273. doi: 10.3934/amc.2016004 |
[13] |
Stefka Bouyuklieva, Iliya Bouyukliev. Classification of the extremal formally self-dual even codes of length 30. Advances in Mathematics of Communications, 2010, 4 (3) : 433-439. doi: 10.3934/amc.2010.4.433 |
[14] |
Masaaki Harada, Katsushi Waki. New extremal formally self-dual even codes of length 30. Advances in Mathematics of Communications, 2009, 3 (4) : 311-316. doi: 10.3934/amc.2009.3.311 |
[15] |
Mary Wilkerson. Thurston's algorithm and rational maps from quadratic polynomial matings. Discrete and Continuous Dynamical Systems - S, 2019, 12 (8) : 2403-2433. doi: 10.3934/dcdss.2019151 |
[16] |
Martino Borello, Francesca Dalla Volta, Gabriele Nebe. The automorphism group of a self-dual $[72,36,16]$ code does not contain $\mathcal S_3$, $\mathcal A_4$ or $D_8$. Advances in Mathematics of Communications, 2013, 7 (4) : 503-510. doi: 10.3934/amc.2013.7.503 |
[17] |
Dandan Wang, Xiwang Cao, Gaojun Luo. A class of linear codes and their complete weight enumerators. Advances in Mathematics of Communications, 2021, 15 (1) : 73-97. doi: 10.3934/amc.2020044 |
[18] |
Steven T. Dougherty, Joe Gildea, Abidin Kaya, Bahattin Yildiz. New self-dual and formally self-dual codes from group ring constructions. Advances in Mathematics of Communications, 2020, 14 (1) : 11-22. doi: 10.3934/amc.2020002 |
[19] |
Xingwu Chen, Jaume Llibre, Weinian Zhang. Averaging approach to cyclicity of hopf bifurcation in planar linear-quadratic polynomial discontinuous differential systems. Discrete and Continuous Dynamical Systems - B, 2017, 22 (10) : 3953-3965. doi: 10.3934/dcdsb.2017203 |
[20] |
Jaume Llibre, Y. Paulina Martínez, Claudio Vidal. Linear type centers of polynomial Hamiltonian systems with nonlinearities of degree 4 symmetric with respect to the y-axis. Discrete and Continuous Dynamical Systems - B, 2018, 23 (2) : 887-912. doi: 10.3934/dcdsb.2018047 |
2020 Impact Factor: 0.935
Tools
Metrics
Other articles
by authors
[Back to Top]