Recently, several classes of cyclic codes with three nonzero weights were constructed. With the generic construction presented by C. Ding, T. Helleseth, T. Kløve and X. Wang, we present new systematic authentication codes based on these cyclic codes. In this paper, we study three special classes of cyclic codes and their authentication codes. With the help of exponential sums, we calculate the maximum success probabilities of the impersonation and substitution attacks on the authentication codes. Our results show that these new authentication codes are better than some of the authentication codes in the literature. As a byproduct, the number of times that each element occurs as the coordinates in the codewords of the cyclic codes is settled, which is a difficult problem in general.
Citation: |
J. Bierbrauer
, Universal hashing and geometric codes, Des. Codes Crypt., 11 (1997)
, 207-221.
![]() ![]() |
|
C. Carlet
, C. Ding
and J. Yuan
, Linear codes from perfect nonlinear mappings and their secret sharing schemes, IEEE Trans. Inf. Theory, 51 (2005)
, 2089-2102.
![]() ![]() |
|
S. Chanson
, C. Ding
and A. Salomaa
, Cartesian authentication codes from functions with optimal nonlinearity, Theor. Comp. Sci., 290 (2003)
, 1737-1752.
![]() ![]() |
|
S.-T. Choi, J.-Y. Kim, J.-S. No and H. Chung, Weight distribution of some cyclic codes, in 2012 IEEE Int. Symp. Inf. Theory Proc. (ISIT), 2012, 2901-2903.
![]() |
|
P. Delsarte
, On subfield subcodes of modified Reed-Solomon codes (corresp.), IEEE Trans. Inf. Theory, 21 (1975)
, 575-576.
![]() ![]() |
|
C. Ding
, Y. Gao
and Z. Zhou
, Five families of three-weight ternary cyclic codes and their duals, IEEE Trans. Inf. Theory, 59 (2013)
, 7940-7946.
![]() ![]() |
|
C. Ding
, T. Helleseth
, T. Kløve
and X. Wang
, A generic construction of Cartesian authentication codes, IEEE Trans. Inf. Theory, 53 (2007)
, 2229-2235.
![]() ![]() |
|
C. Ding
and H. Niederreiter
, Systematic authentication codes from highly nonlinear functions, IEEE Trans. Inf. Theory, 50 (2004)
, 2421-2428.
![]() ![]() |
|
C. Ding
and X. Wang
, A coding theory construction of new systematic authentication codes, Theor. Comp. Sci., 330 (2005)
, 81-99.
![]() ![]() |
|
T. Helleseth and T. Johansson, Universal hash functions from exponential sums over finite fields and Galois rings, in Adv. Crypt. -CRYPTO'96, Springer, 1996, 31-44.
![]() ![]() |
|
G. A. Kabatianskii
, B. Smeets
and T. Johansson
, On the cardinality of systematic authentication codes via error-correcting codes, IEEE Trans. Inf. Theory, 42 (1996)
, 566-578.
![]() ![]() |
|
C. Li
, N. Li
, T. Helleseth
and C. Ding
, The weight distributions of several classes of cyclic codes from APN monomials, IEEE Trans. Inf. Theory, 60 (2014)
, 4710-4721.
![]() ![]() |
|
R. Lidl and H. Niederreiter, Finite Fields, Cambridge Univ. Press, 1997.
![]() ![]() |
|
J. Luo
and K. Feng
, On the weight distributions of two classes of cyclic codes, IEEE Trans. Inf. Theory, 54 (2008)
, 5332-5344.
![]() ![]() |
|
F. Özbudak
and Z. Saygi
, Some constructions of systematic authentication codes using Galois rings, Des. Codes Crypt., 41 (2006)
, 343-357.
![]() ![]() |
|
R. S. Rees
and D. R. Stinson
, Combinatorial characterizations of authentication codes Ⅱ, Des. Codes Crypt., 7 (1996)
, 239-259.
![]() ![]() |
|
G. J. Simmons, Authentication theory/coding theory, in Adv. Crypt. -CRYPTO'84, Springer, 1984,411-431.
![]() |
|
H. Wang
, C. Xing
and R. Safavi-Naini
, Linear authentication codes: bounds and constructions, IEEE Trans. Inf. Theory, 49 (2003)
, 866-872.
![]() ![]() |
|
J. Yuan
, C. Carlet
and C. Ding
, The weight distribution of a class of linear codes from perfect nonlinear functions, IEEE Trans. Inf. Theory, 52 (2006)
, 712-717.
![]() ![]() |
|
Z. Zhou
and C. Ding
, Seven classes of three-weight cyclic codes, IEEE Trans. Commun., 61 (2013)
, 4120-4126.
![]() ![]() |
|
Z. Zhou
and C. Ding
, A class of three-weight cyclic codes, Finite Fields Appl., 25 (2014)
, 79-93.
![]() ![]() |
|
Z. Zhou
, C. Ding
, J. Luo
and A. Zhang
, A family of five-weight cyclic codes and their weight enumerators, IEEE Trans. Inf. Theory, 59 (2013)
, 6674-6682.
![]() ![]() |