-
Previous Article
A new family of one-coincidence sets of sequences with dispersed elements for frequency hopping cdma systems
- AMC Home
- This Issue
-
Next Article
Channel decomposition for multilevel codes over multilevel and partial erasure channels
On ${{\mathbb{Z}}}_{p^r}{{\mathbb{Z}}}_{p^s}$-additive cyclic codes
Department of Information and Communications Engineering, Universitat Autónoma de Barcelona, 08193-Bellaterra, Spain |
A ${\mathbb{Z}}_{p^r}{\mathbb{Z}}_{p^s}$-additive code, $r≤ s$, is a${\mathbb{Z}}_{p^s}$-submodule of ${{\mathbb{Z}}_{p^r}^α× {\mathbb{Z}}_{p^s}^β}$. We introduce ${\mathbb{Z}}_{p^r}{\mathbb{Z}}_{p^s}$-additive cyclic codes. These codes can be seen as ${\mathbb{Z}}_{p^s}[x]$-submodules of ${\mathcal{R}^{α,β}_{r,s}}= \frac{{\mathbb{Z}}_{p^r}[x]}{\langle x^α-1\rangle}×\frac{{\mathbb{Z}}_{p^s}[x]}{\langle x^β-1\rangle}$. We determine the generator polynomials of a code over ${\mathcal{R}^{α,β}_{r,s}}$ and a minimal spanning set over ${{\mathbb{Z}}_{p^r}^α× {\mathbb{Z}}_{p^s}^β}$ in terms of the generator polynomials. We also study the duality in the module ${\mathcal{R}^{α,β}_{r,s}}$.Our results generalise those for ${\mathbb{Z}}_{2}{\mathbb{Z}}_{4}$-additive cyclic codes.
References:
[1] |
T. Abualrub, I. Siap and N. Aydin,
$\mathbb Z_2\mathbb Z_4$-additive cyclic codes, IEEE Trans. Inf. Theory, 60 (2014), 1508-1514.
|
[2] |
I. Aydogdu and I. Siap,
The structure of $\mathbb Z_2\mathbb Z_{2^s}$-additive codes: bounds on the minimum distance, Appl. Math. Inf. Sci., 7 (2013), 2271-2278.
|
[3] |
I. Aydogdu and I. Siap,
On $\mathbb Z_{p^r}\mathbb Z_{p^s}$-additive codes, Lin. Multilin. Algebra, 63 (2014), 2089-2102.
|
[4] |
J. Borges, C. Fernández-Córdoba, J. Pujol, J. Rifá and M. Villanueva,
$\mathbb Z_2\mathbb Z_4$-linear codes: generator matrices and duality, Des. Codes Crypt., 54 (2010), 167-179.
|
[5] |
J. Borges, C. Fernández-Córdoba and R. Ten-Valls,
$\mathbb Z_2\mathbb Z_4$-additive cyclic codes, generator polynomials and dual codes, IEEE Trans. Inf. Theory, 62 (2016), 6348-6354.
|
[6] |
J. Borges, C. Fernández-Córdoba and R. Ten-Valls,
$\mathbb Z_2$-double cyclic codes, Des. Codes Crypt., 86 (2018), 463-479.
doi: 10.1007/s10623-017-0334-8. |
[7] |
A. R. Calderbank and N. J. A. Sloane,
Modular and $p$-adic cyclic codes, Des. Codes Crypt., 6 (1995), 21-35.
|
[8] |
H. Q. Dinh and S. R. López-Permouth,
Cyclic and negacyclic codes over finite chain rings, IEEE Trans. Inf. Theory, 50 (2004), 1728-1744.
|
[9] |
J. Gao, M. Shi, T. Wu and F. Fu,
On double cyclic codes over $\mathbb Z_4$, Finite Fields Appl., 39 (2016), 233-250.
|
[10] |
P. Kanwar and S. R. López-Permouth,
Cyclic codes over the integers modulo $p^m$, Finite Fields Appl., 3 (1997), 334-352.
|
show all references
References:
[1] |
T. Abualrub, I. Siap and N. Aydin,
$\mathbb Z_2\mathbb Z_4$-additive cyclic codes, IEEE Trans. Inf. Theory, 60 (2014), 1508-1514.
|
[2] |
I. Aydogdu and I. Siap,
The structure of $\mathbb Z_2\mathbb Z_{2^s}$-additive codes: bounds on the minimum distance, Appl. Math. Inf. Sci., 7 (2013), 2271-2278.
|
[3] |
I. Aydogdu and I. Siap,
On $\mathbb Z_{p^r}\mathbb Z_{p^s}$-additive codes, Lin. Multilin. Algebra, 63 (2014), 2089-2102.
|
[4] |
J. Borges, C. Fernández-Córdoba, J. Pujol, J. Rifá and M. Villanueva,
$\mathbb Z_2\mathbb Z_4$-linear codes: generator matrices and duality, Des. Codes Crypt., 54 (2010), 167-179.
|
[5] |
J. Borges, C. Fernández-Córdoba and R. Ten-Valls,
$\mathbb Z_2\mathbb Z_4$-additive cyclic codes, generator polynomials and dual codes, IEEE Trans. Inf. Theory, 62 (2016), 6348-6354.
|
[6] |
J. Borges, C. Fernández-Córdoba and R. Ten-Valls,
$\mathbb Z_2$-double cyclic codes, Des. Codes Crypt., 86 (2018), 463-479.
doi: 10.1007/s10623-017-0334-8. |
[7] |
A. R. Calderbank and N. J. A. Sloane,
Modular and $p$-adic cyclic codes, Des. Codes Crypt., 6 (1995), 21-35.
|
[8] |
H. Q. Dinh and S. R. López-Permouth,
Cyclic and negacyclic codes over finite chain rings, IEEE Trans. Inf. Theory, 50 (2004), 1728-1744.
|
[9] |
J. Gao, M. Shi, T. Wu and F. Fu,
On double cyclic codes over $\mathbb Z_4$, Finite Fields Appl., 39 (2016), 233-250.
|
[10] |
P. Kanwar and S. R. López-Permouth,
Cyclic codes over the integers modulo $p^m$, Finite Fields Appl., 3 (1997), 334-352.
|
[1] |
Nabil Bennenni, Kenza Guenda, Sihem Mesnager. DNA cyclic codes over rings. Advances in Mathematics of Communications, 2017, 11 (1) : 83-98. doi: 10.3934/amc.2017004 |
[2] |
Sergio R. López-Permouth, Steve Szabo. On the Hamming weight of repeated root cyclic and negacyclic codes over Galois rings. Advances in Mathematics of Communications, 2009, 3 (4) : 409-420. doi: 10.3934/amc.2009.3.409 |
[3] |
Steven T. Dougherty, Abidin Kaya, Esengül Saltürk. Cyclic codes over local Frobenius rings of order 16. Advances in Mathematics of Communications, 2017, 11 (1) : 99-114. doi: 10.3934/amc.2017005 |
[4] |
W. Cary Huffman. Additive cyclic codes over $\mathbb F_4$. Advances in Mathematics of Communications, 2008, 2 (3) : 309-343. doi: 10.3934/amc.2008.2.309 |
[5] |
W. Cary Huffman. Additive cyclic codes over $\mathbb F_4$. Advances in Mathematics of Communications, 2007, 1 (4) : 427-459. doi: 10.3934/amc.2007.1.427 |
[6] |
Cem Güneri, Ferruh Özbudak, Funda ÖzdemIr. On complementary dual additive cyclic codes. Advances in Mathematics of Communications, 2017, 11 (2) : 353-357. doi: 10.3934/amc.2017028 |
[7] |
Zihui Liu. Galois LCD codes over rings. Advances in Mathematics of Communications, 2022 doi: 10.3934/amc.2022002 |
[8] |
Anderson Silva, C. Polcino Milies. Cyclic codes of length $ 2p^n $ over finite chain rings. Advances in Mathematics of Communications, 2020, 14 (2) : 233-245. doi: 10.3934/amc.2020017 |
[9] |
Aicha Batoul, Kenza Guenda, T. Aaron Gulliver. Some constacyclic codes over finite chain rings. Advances in Mathematics of Communications, 2016, 10 (4) : 683-694. doi: 10.3934/amc.2016034 |
[10] |
Somphong Jitman, San Ling, Patanee Udomkavanich. Skew constacyclic codes over finite chain rings. Advances in Mathematics of Communications, 2012, 6 (1) : 39-63. doi: 10.3934/amc.2012.6.39 |
[11] |
Kanat Abdukhalikov. On codes over rings invariant under affine groups. Advances in Mathematics of Communications, 2013, 7 (3) : 253-265. doi: 10.3934/amc.2013.7.253 |
[12] |
Delphine Boucher, Patrick Solé, Felix Ulmer. Skew constacyclic codes over Galois rings. Advances in Mathematics of Communications, 2008, 2 (3) : 273-292. doi: 10.3934/amc.2008.2.273 |
[13] |
Eimear Byrne. On the weight distribution of codes over finite rings. Advances in Mathematics of Communications, 2011, 5 (2) : 395-406. doi: 10.3934/amc.2011.5.395 |
[14] |
Steven T. Dougherty, Esengül Saltürk, Steve Szabo. Codes over local rings of order 16 and binary codes. Advances in Mathematics of Communications, 2016, 10 (2) : 379-391. doi: 10.3934/amc.2016012 |
[15] |
Gianira N. Alfarano, Anina Gruica, Julia Lieb, Joachim Rosenthal. Convolutional codes over finite chain rings, MDP codes and their characterization. Advances in Mathematics of Communications, 2022 doi: 10.3934/amc.2022028 |
[16] |
Simeon Ball, Guillermo Gamboa, Michel Lavrauw. On additive MDS codes over small fields. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021024 |
[17] |
Thomas Westerbäck. Parity check systems of nonlinear codes over finite commutative Frobenius rings. Advances in Mathematics of Communications, 2017, 11 (3) : 409-427. doi: 10.3934/amc.2017035 |
[18] |
Zihui Liu, Dajian Liao. Higher weights and near-MDR codes over chain rings. Advances in Mathematics of Communications, 2018, 12 (4) : 761-772. doi: 10.3934/amc.2018045 |
[19] |
Minjia Shi, Daitao Huang, Lin Sok, Patrick Solé. Double circulant self-dual and LCD codes over Galois rings. Advances in Mathematics of Communications, 2019, 13 (1) : 171-183. doi: 10.3934/amc.2019011 |
[20] |
Hai Q. Dinh, Hien D. T. Nguyen. On some classes of constacyclic codes over polynomial residue rings. Advances in Mathematics of Communications, 2012, 6 (2) : 175-191. doi: 10.3934/amc.2012.6.175 |
2021 Impact Factor: 1.015
Tools
Metrics
Other articles
by authors
[Back to Top]