\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Finite length sequences with large nonlinear complexity

  • * Corresponding author: Zhimin Sun

    * Corresponding author: Zhimin Sun

The authors were supported by the National Natural Science Foundation of China Grant (No. 61472120). X. Zeng and Z. Sun were also granted by National Natural Science Foundation of Hubei Province of China (No. 2017CFB143) and China Scholarship Council, respectively

Abstract Full Text(HTML) Figure(0) / Table(1) Related Papers Cited by
  • Finite length sequences with large nonlinear complexity over $\mathbb{Z}_{p}\, (p≥ 2)$ are investigated in this paper. We characterize all $p$-ary sequences of length $n$ having nonlinear complexity $n-j$ for $j=2, 3$, where $n$ is an integer satisfying $n≥ 2j$. For $n≥ 8$, all binary sequences of length $n$ with nonlinear complexity $n-4$ are obtained. Furthermore, the numbers and $k$-error nonlinear complexity of these sequences are completely determined, respectively.

    Mathematics Subject Classification: Primary: 94A55; Secondary: 94A60.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Table 1.  Binary sequences of length 11 with nonlinear complexity 7 and their distribution

    $Set$Sequences # Seq.
    $K_1$00000001000, 11111110111, 00000001001, 11111110011, 00000001101
    11111110110, 00000001010, 11111110101, 00000001011, 00000001100
    11111110100, 11111110010, 00000001110, 11111110001, 00000001111
    11111110000, 01010101100, 10101010011, 01010101101, 10101010010
    01010101110, 10101010001, 01010101111, 10101010000, 01111111000
    10000000111, 01111111001, 10000000110, 01111111010, 10000000101
    01111111011, 10000000100, 00100100110, 11011011001, 00100100111
    11011011000, 00101010110, 11010101001, 00101010111, 11010101000
    00111111100, 11000000011, 00111111101, 11000000010, 01001001010
    10110110101, 01001001011, 10110110100, 01000000010, 10111111101
    01000000011, 10111111100, 01101101110, 10010010001, 01101101111
    10010010000
    56
    $K_2$00110011000, 11001100111, 00110110111, 11001001000, 01100110010
    10011001101, 01100000001, 10011111110
    8
    $K_3$00010001001, 11101110110, 00010010011, 11101101100, 00010101011
    11101010100, 00011111110, 11100000001, 00100000001, 11011111110
    00100010000, 11011101111, 01000100011, 10111011100, 01011011010
    10100100101, 01011111110, 10100000001, 01101010100, 10010101011
    01110111010, 10001000101
    22
     | Show Table
    DownLoad: CSV
  •   C. J. A. Jansen, Investigations on Nonlinear Streamcipher Systems: Construction and Evaluation Methods, Ph. D thesis, Technical Univ. Delft, 1989.
      C. J. A. Jansen and D. E. Boekee, The shortest feedback shift register that can generate a given sequence, in Adv. Crypt. -CRYPTO'89, 1990, 90–99.
      N. Li  and  X. Tang , On the linear complexity of binary sequences of period $4N$ with optimal autocorrelation value/magnitude, IEEE Trans. Inf. Theory, 57 (2011) , 7597-7604. 
      F. T. Macwilliams  and  N. J. A. Sloane , Psedo-Random sequences and arrays, Proc. IEEE, 64 (1976) , 1715-1729. 
      W. Meidl  and  A. Winterhof , On the linear complexity profile of some new explicit inverse pseudorandom numbers, J. Complexity, 20 (2004) , 350-355. 
      H. Niederreite, Random Number Generation and Quasi-Monte Carlo Methods, Soc. Ind. Appl. Math., Philadelphia, 1992.
      H. Niederreiter, Linear complexity and related complexity measures for sequences, in Progr. Crypt. -INDOCRYPT 2003, 2003, 1–17.
      P. Rizomiliotis , Constructing periodic binary sequences of maximum nonlinear span, IEEE Trans. Inf. Theory, 52 (2006) , 4257-4261. 
      P. Rizomiliotis  and  N. Kalouptsidis , Results on the nonlinear span of binary sequences, IEEE Trans. Inf. Theory, 51 (2005) , 1555-1563. 
      Z. Sun , X. Zeng , C. Li  and  T. Helleseth , Investigations on periodic sequences with maximum nonlinear complexity, IEEE Trans. Inf. Theory, 63 (2017) , 6188-6198. 
  • 加载中

Tables(1)

SHARE

Article Metrics

HTML views(1015) PDF downloads(499) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return