May  2018, 12(2): 287-301. doi: 10.3934/amc.2018018

Hilbert quasi-polynomial for order domains and application to coding theory

Università degli Studi di Trento, Trento, Italy

Received  October 2016 Revised  November 2017 Published  March 2018

Fund Project: This research was partially funded by the Italian Ministry of Education, Universities and Research, with the project PRIN 2015TW9LSR "Group theory and applications".

We present an application of Hilbert quasi-polynomials to order domains, allowing the effective check of the second order-domain condition in a direct way. We also provide an improved algorithm for the computation of the related Hilbert quasi-polynomials. This allows to identify order domain codes more easily.

Citation: Carla Mascia, Giancarlo Rinaldo, Massimiliano Sala. Hilbert quasi-polynomial for order domains and application to coding theory. Advances in Mathematics of Communications, 2018, 12 (2) : 287-301. doi: 10.3934/amc.2018018
References:
[1]

H. E. Andersen and O. Geil, Evaluation codes from order domain theory, Finite Fields Appl., 14 (2008), 92-123.  doi: 10.1016/j.ffa.2006.12.004.

[2]

M. Caboara and C. Mascia, A partial characterization of Hilbert quasi-polynomials in the non-standard case, arXiv: 1607.05468, (2016).

[3]

S. FanaliM. Giulietti and I. Platoni, On maximal curves over finite fields of small order, Adv. Math. Commun., 6 (2012), 107-120.  doi: 10.3934/amc.2012.6.107.

[4]

J. Fitzgerald and R. F. Lax, Decoding affine variety codes using Gröbner bases, Des. Codes Cryptogr., 13 (1998), 147-158.  doi: 10.1023/A:1008274212057.

[5]

A. GarciaC. Güneri and H. Stichtenoth, A generalization of the Giulietti--Korchmáros maximal curve, Advances in Geometry, 10 (2010), 427-434. 

[6]

O. Geil, Algebraic geometry codes from order domains, In M. Sala, T. Mora, L. Perret, S. Sakata and C. Traverso, Groebner Bases, Coding, and Cryptography, RISC Book Series, Springer, (2009), 121–141. doi: 10.1007/978-3-540-93806-4_8.

[7]

O. Geil and R. Pellikaan, On the structure of order domains, Finite Fields Appl., 8 (2002), 369-396.  doi: 10.1006/ffta.2001.0347.

[8]

O. Geil, Evaluation codes from an affine-variety codes perspective, Advances in Algebraic Geometry Codes, Ser. Coding Theory Cryptol, 5 (2008), 153-180. 

[9]

M. Giulietti and G. Korchmáros, A new family of maximal curves over a finite field, Mathematische Annalen, 343 (2009), 229-245.  doi: 10.1007/s00208-008-0270-z.

[10]

J. W. L. Glaisher, Formulae for partitions into given elements, derived from Sylvester's theorem, Quart. J. Math, 40 (1909), 275-348. 

[11]

V. D. Goppa, Codes associated with divisors, Problem of Inform. Trans., 13 (1977), 33-39. 

[12]

T. Høholdt, J. van Lint and R. Pellikaan, Algebraic geometry of codes, In Handbook of Coding Theory, V. S. Pless and W. C. Huffman, 1/2 (1998), 871–961.

[13]

M. Kreuzer and L. Robbiano, Computational Commutative Algebra 2, Springer Science & Business Media, 2005.

[14]

D. V. Lee, On the power-series expansion of a rational function, Acta Arithmetica, 62 (1992), 229-255.  doi: 10.4064/aa-62-3-229-255.

[15]

C. MarcollaE. Orsini and M. Sala, Improved decoding of affine-variety codes, Journal of Pure and Applied Algebra, 216 (2012), 1533-1565.  doi: 10.1016/j.jpaa.2012.01.002.

[16]

R. Matsumoto, Miura's Generalization of One-Point AG codes is Equivalent to Høholdt, van Lint and Pellikaan's generalization, IEICE Trans. Fund., E82-A.10 (1999), 2007-2010. 

[17]

R. Matsumoto and S. Miura, On the Feng-Rao bound for the L-construction of algebraic geometry codes, IEICE TRANSACTIONS on Fundamentals of Electronics, Communications and Computer Sciences, 83 (2000), 923-926. 

[18]

S. Miura, Linear Codes on Affine Algebraic Varieties, IEICE Trans. Fundamentals, 1996.

[19]

R. Stanley, Combinatorics and Commutative Algebra, Progress in Mathematics, 41. Birkhäuser Boston, Inc., Boston, MA, 1983.

[20]

J. J. Sylvester, On subvariants, ie semi-invariants to binary quantics of an unlimited order, American Journal of Mathematics, 5 (1882), 79-136.  doi: 10.2307/2369536.

[21]

J. J. Sylvester, Computational methods in commutative algebra and algebraic geometry, Springer Science & Business Media, 2 (2004). 

show all references

References:
[1]

H. E. Andersen and O. Geil, Evaluation codes from order domain theory, Finite Fields Appl., 14 (2008), 92-123.  doi: 10.1016/j.ffa.2006.12.004.

[2]

M. Caboara and C. Mascia, A partial characterization of Hilbert quasi-polynomials in the non-standard case, arXiv: 1607.05468, (2016).

[3]

S. FanaliM. Giulietti and I. Platoni, On maximal curves over finite fields of small order, Adv. Math. Commun., 6 (2012), 107-120.  doi: 10.3934/amc.2012.6.107.

[4]

J. Fitzgerald and R. F. Lax, Decoding affine variety codes using Gröbner bases, Des. Codes Cryptogr., 13 (1998), 147-158.  doi: 10.1023/A:1008274212057.

[5]

A. GarciaC. Güneri and H. Stichtenoth, A generalization of the Giulietti--Korchmáros maximal curve, Advances in Geometry, 10 (2010), 427-434. 

[6]

O. Geil, Algebraic geometry codes from order domains, In M. Sala, T. Mora, L. Perret, S. Sakata and C. Traverso, Groebner Bases, Coding, and Cryptography, RISC Book Series, Springer, (2009), 121–141. doi: 10.1007/978-3-540-93806-4_8.

[7]

O. Geil and R. Pellikaan, On the structure of order domains, Finite Fields Appl., 8 (2002), 369-396.  doi: 10.1006/ffta.2001.0347.

[8]

O. Geil, Evaluation codes from an affine-variety codes perspective, Advances in Algebraic Geometry Codes, Ser. Coding Theory Cryptol, 5 (2008), 153-180. 

[9]

M. Giulietti and G. Korchmáros, A new family of maximal curves over a finite field, Mathematische Annalen, 343 (2009), 229-245.  doi: 10.1007/s00208-008-0270-z.

[10]

J. W. L. Glaisher, Formulae for partitions into given elements, derived from Sylvester's theorem, Quart. J. Math, 40 (1909), 275-348. 

[11]

V. D. Goppa, Codes associated with divisors, Problem of Inform. Trans., 13 (1977), 33-39. 

[12]

T. Høholdt, J. van Lint and R. Pellikaan, Algebraic geometry of codes, In Handbook of Coding Theory, V. S. Pless and W. C. Huffman, 1/2 (1998), 871–961.

[13]

M. Kreuzer and L. Robbiano, Computational Commutative Algebra 2, Springer Science & Business Media, 2005.

[14]

D. V. Lee, On the power-series expansion of a rational function, Acta Arithmetica, 62 (1992), 229-255.  doi: 10.4064/aa-62-3-229-255.

[15]

C. MarcollaE. Orsini and M. Sala, Improved decoding of affine-variety codes, Journal of Pure and Applied Algebra, 216 (2012), 1533-1565.  doi: 10.1016/j.jpaa.2012.01.002.

[16]

R. Matsumoto, Miura's Generalization of One-Point AG codes is Equivalent to Høholdt, van Lint and Pellikaan's generalization, IEICE Trans. Fund., E82-A.10 (1999), 2007-2010. 

[17]

R. Matsumoto and S. Miura, On the Feng-Rao bound for the L-construction of algebraic geometry codes, IEICE TRANSACTIONS on Fundamentals of Electronics, Communications and Computer Sciences, 83 (2000), 923-926. 

[18]

S. Miura, Linear Codes on Affine Algebraic Varieties, IEICE Trans. Fundamentals, 1996.

[19]

R. Stanley, Combinatorics and Commutative Algebra, Progress in Mathematics, 41. Birkhäuser Boston, Inc., Boston, MA, 1983.

[20]

J. J. Sylvester, On subvariants, ie semi-invariants to binary quantics of an unlimited order, American Journal of Mathematics, 5 (1882), 79-136.  doi: 10.2307/2369536.

[21]

J. J. Sylvester, Computational methods in commutative algebra and algebraic geometry, Springer Science & Business Media, 2 (2004). 

[1]

Kun-Peng Jin, Jin Liang, Ti-Jun Xiao. Uniform polynomial stability of second order integro-differential equations in Hilbert spaces with positive definite kernels. Discrete and Continuous Dynamical Systems - S, 2021, 14 (9) : 3141-3166. doi: 10.3934/dcdss.2021077

[2]

Marcin Dumnicki, Łucja Farnik, Halszka Tutaj-Gasińska. Asymptotic Hilbert polynomial and a bound for Waldschmidt constants. Electronic Research Announcements, 2016, 23: 8-18. doi: 10.3934/era.2016.23.002

[3]

Tijana Levajković, Hermann Mena, Amjad Tuffaha. The stochastic linear quadratic optimal control problem in Hilbert spaces: A polynomial chaos approach. Evolution Equations and Control Theory, 2016, 5 (1) : 105-134. doi: 10.3934/eect.2016.5.105

[4]

George J. Bautista, Ademir F. Pazoto. Decay of solutions for a dissipative higher-order Boussinesq system on a periodic domain. Communications on Pure and Applied Analysis, 2020, 19 (2) : 747-769. doi: 10.3934/cpaa.2020035

[5]

Chuang Zheng. Inverse problems for the fourth order Schrödinger equation on a finite domain. Mathematical Control and Related Fields, 2015, 5 (1) : 177-189. doi: 10.3934/mcrf.2015.5.177

[6]

Jun-Ren Luo, Ti-Jun Xiao. Decay rates for second order evolution equations in Hilbert spaces with nonlinear time-dependent damping. Evolution Equations and Control Theory, 2020, 9 (2) : 359-373. doi: 10.3934/eect.2020009

[7]

Jiantao Jiang, Jing An, Jianwei Zhou. A novel numerical method based on a high order polynomial approximation of the fourth order Steklov equation and its eigenvalue problems. Discrete and Continuous Dynamical Systems - B, 2023, 28 (1) : 50-69. doi: 10.3934/dcdsb.2022066

[8]

A. Naga, Z. Zhang. The polynomial-preserving recovery for higher order finite element methods in 2D and 3D. Discrete and Continuous Dynamical Systems - B, 2005, 5 (3) : 769-798. doi: 10.3934/dcdsb.2005.5.769

[9]

Lin Zhu, Xinzhen Zhang. Semidefinite relaxation method for polynomial optimization with second-order cone complementarity constraints. Journal of Industrial and Management Optimization, 2022, 18 (3) : 1505-1517. doi: 10.3934/jimo.2021030

[10]

Olof Heden. The partial order of perfect codes associated to a perfect code. Advances in Mathematics of Communications, 2007, 1 (4) : 399-412. doi: 10.3934/amc.2007.1.399

[11]

Na Peng, Jiayu Han, Jing An. An efficient finite element method and error analysis for fourth order problems in a spherical domain. Discrete and Continuous Dynamical Systems - B, 2022, 27 (11) : 6807-6821. doi: 10.3934/dcdsb.2022021

[12]

Kun Li, Ting-Zhu Huang, Liang Li, Ying Zhao, Stéphane Lanteri. A non-intrusive model order reduction approach for parameterized time-domain Maxwell's equations. Discrete and Continuous Dynamical Systems - B, 2023, 28 (1) : 449-473. doi: 10.3934/dcdsb.2022084

[13]

Jaume Giné, Maite Grau, Jaume Llibre. Polynomial and rational first integrals for planar quasi--homogeneous polynomial differential systems. Discrete and Continuous Dynamical Systems, 2013, 33 (10) : 4531-4547. doi: 10.3934/dcds.2013.33.4531

[14]

Terry Shue Chien Lau, Chik How Tan. Polynomial-time plaintext recovery attacks on the IKKR code-based cryptosystems. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020132

[15]

Yanqin Xiong, Maoan Han. Planar quasi-homogeneous polynomial systems with a given weight degree. Discrete and Continuous Dynamical Systems, 2016, 36 (7) : 4015-4025. doi: 10.3934/dcds.2016.36.4015

[16]

Hebai Chen, Jaume Llibre, Yilei Tang. Centers of discontinuous piecewise smooth quasi–homogeneous polynomial differential systems. Discrete and Continuous Dynamical Systems - B, 2019, 24 (12) : 6495-6509. doi: 10.3934/dcdsb.2019150

[17]

Yilei Tang, Long Wang, Xiang Zhang. Center of planar quintic quasi--homogeneous polynomial differential systems. Discrete and Continuous Dynamical Systems, 2015, 35 (5) : 2177-2191. doi: 10.3934/dcds.2015.35.2177

[18]

Xu Liu, Jun Zhou. Initial-boundary value problem for a fourth-order plate equation with Hardy-Hénon potential and polynomial nonlinearity. Electronic Research Archive, 2020, 28 (2) : 599-625. doi: 10.3934/era.2020032

[19]

Irene Benedetti, Luisa Malaguti, Valentina Taddei. Nonlocal problems in Hilbert spaces. Conference Publications, 2015, 2015 (special) : 103-111. doi: 10.3934/proc.2015.0103

[20]

Fritz Gesztesy, Rudi Weikard, Maxim Zinchenko. On a class of model Hilbert spaces. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 5067-5088. doi: 10.3934/dcds.2013.33.5067

2021 Impact Factor: 1.015

Metrics

  • PDF downloads (327)
  • HTML views (287)
  • Cited by (0)

[Back to Top]