We present an application of Hilbert quasi-polynomials to order domains, allowing the effective check of the second order-domain condition in a direct way. We also provide an improved algorithm for the computation of the related Hilbert quasi-polynomials. This allows to identify order domain codes more easily.
Citation: |
H. E. Andersen
and O. Geil
, Evaluation codes from order domain theory, Finite Fields Appl., 14 (2008)
, 92-123.
doi: 10.1016/j.ffa.2006.12.004.![]() ![]() ![]() |
|
M. Caboara and C. Mascia, A partial characterization of Hilbert quasi-polynomials in the non-standard case, arXiv: 1607.05468, (2016).
![]() |
|
S. Fanali
, M. Giulietti
and I. Platoni
, On maximal curves over finite fields of small order, Adv. Math. Commun., 6 (2012)
, 107-120.
doi: 10.3934/amc.2012.6.107.![]() ![]() ![]() |
|
J. Fitzgerald
and R. F. Lax
, Decoding affine variety codes using Gröbner bases, Des. Codes Cryptogr., 13 (1998)
, 147-158.
doi: 10.1023/A:1008274212057.![]() ![]() ![]() |
|
A. Garcia
, C. Güneri
and H. Stichtenoth
, A generalization of the Giulietti--Korchmáros maximal curve, Advances in Geometry, 10 (2010)
, 427-434.
![]() ![]() |
|
O. Geil, Algebraic geometry codes from order domains, In M. Sala, T. Mora, L. Perret, S. Sakata and C. Traverso, Groebner Bases, Coding, and Cryptography, RISC Book Series, Springer, (2009), 121–141.
doi: 10.1007/978-3-540-93806-4_8.![]() ![]() |
|
O. Geil
and R. Pellikaan
, On the structure of order domains, Finite Fields Appl., 8 (2002)
, 369-396.
doi: 10.1006/ffta.2001.0347.![]() ![]() ![]() |
|
O. Geil
, Evaluation codes from an affine-variety codes perspective, Advances in Algebraic Geometry Codes, Ser. Coding Theory Cryptol, 5 (2008)
, 153-180.
![]() ![]() |
|
M. Giulietti
and G. Korchmáros
, A new family of maximal curves over a finite field, Mathematische Annalen, 343 (2009)
, 229-245.
doi: 10.1007/s00208-008-0270-z.![]() ![]() ![]() |
|
J. W. L. Glaisher
, Formulae for partitions into given elements, derived from Sylvester's theorem, Quart. J. Math, 40 (1909)
, 275-348.
![]() |
|
V. D. Goppa
, Codes associated with divisors, Problem of Inform. Trans., 13 (1977)
, 33-39.
![]() ![]() |
|
T. Høholdt, J. van Lint and R. Pellikaan, Algebraic geometry of codes, In Handbook of Coding Theory, V. S. Pless and W. C. Huffman, 1/2 (1998), 871–961.
![]() ![]() |
|
M. Kreuzer and L. Robbiano, Computational Commutative Algebra 2, Springer Science & Business Media, 2005.
![]() ![]() |
|
D. V. Lee
, On the power-series expansion of a rational function, Acta Arithmetica, 62 (1992)
, 229-255.
doi: 10.4064/aa-62-3-229-255.![]() ![]() ![]() |
|
C. Marcolla
, E. Orsini
and M. Sala
, Improved decoding of affine-variety codes, Journal of Pure and Applied Algebra, 216 (2012)
, 1533-1565.
doi: 10.1016/j.jpaa.2012.01.002.![]() ![]() ![]() |
|
R. Matsumoto
, Miura's Generalization of One-Point AG codes is Equivalent to Høholdt, van Lint and Pellikaan's generalization, IEICE Trans. Fund., E82-A.10 (1999)
, 2007-2010.
![]() |
|
R. Matsumoto
and S. Miura
, On the Feng-Rao bound for the L-construction of algebraic geometry codes, IEICE TRANSACTIONS on Fundamentals of Electronics, Communications and Computer Sciences, 83 (2000)
, 923-926.
![]() |
|
S. Miura,
Linear Codes on Affine Algebraic Varieties, IEICE Trans. Fundamentals, 1996.
![]() |
|
R. Stanley, Combinatorics and Commutative Algebra, Progress in Mathematics, 41. Birkhäuser Boston, Inc., Boston, MA, 1983.
![]() ![]() |
|
J. J. Sylvester
, On subvariants, ie semi-invariants to binary quantics of an unlimited order, American Journal of Mathematics, 5 (1882)
, 79-136.
doi: 10.2307/2369536.![]() ![]() ![]() |
|
J. J. Sylvester
, Computational methods in commutative algebra and algebraic geometry, Springer Science & Business Media, 2 (2004)
.
![]() |