Advanced Search
Article Contents
Article Contents

Hilbert quasi-polynomial for order domains and application to coding theory

This research was partially funded by the Italian Ministry of Education, Universities and Research, with the project PRIN 2015TW9LSR "Group theory and applications"

Abstract Full Text(HTML) Related Papers Cited by
  • We present an application of Hilbert quasi-polynomials to order domains, allowing the effective check of the second order-domain condition in a direct way. We also provide an improved algorithm for the computation of the related Hilbert quasi-polynomials. This allows to identify order domain codes more easily.

    Mathematics Subject Classification: Primary: 13P25, 11T71; Secondary: 12Y05.


    \begin{equation} \\ \end{equation}
  • 加载中
  •   H. E. Andersen  and  O. Geil , Evaluation codes from order domain theory, Finite Fields Appl., 14 (2008) , 92-123.  doi: 10.1016/j.ffa.2006.12.004.
      M. Caboara and C. Mascia, A partial characterization of Hilbert quasi-polynomials in the non-standard case, arXiv: 1607.05468, (2016).
      S. Fanali , M. Giulietti  and  I. Platoni , On maximal curves over finite fields of small order, Adv. Math. Commun., 6 (2012) , 107-120.  doi: 10.3934/amc.2012.6.107.
      J. Fitzgerald  and  R. F. Lax , Decoding affine variety codes using Gröbner bases, Des. Codes Cryptogr., 13 (1998) , 147-158.  doi: 10.1023/A:1008274212057.
      A. Garcia , C. Güneri  and  H. Stichtenoth , A generalization of the Giulietti--Korchmáros maximal curve, Advances in Geometry, 10 (2010) , 427-434. 
      O. Geil, Algebraic geometry codes from order domains, In M. Sala, T. Mora, L. Perret, S. Sakata and C. Traverso, Groebner Bases, Coding, and Cryptography, RISC Book Series, Springer, (2009), 121–141. doi: 10.1007/978-3-540-93806-4_8.
      O. Geil  and  R. Pellikaan , On the structure of order domains, Finite Fields Appl., 8 (2002) , 369-396.  doi: 10.1006/ffta.2001.0347.
      O. Geil , Evaluation codes from an affine-variety codes perspective, Advances in Algebraic Geometry Codes, Ser. Coding Theory Cryptol, 5 (2008) , 153-180. 
      M. Giulietti  and  G. Korchmáros , A new family of maximal curves over a finite field, Mathematische Annalen, 343 (2009) , 229-245.  doi: 10.1007/s00208-008-0270-z.
      J. W. L. Glaisher , Formulae for partitions into given elements, derived from Sylvester's theorem, Quart. J. Math, 40 (1909) , 275-348. 
      V. D. Goppa , Codes associated with divisors, Problem of Inform. Trans., 13 (1977) , 33-39. 
      T. Høholdt, J. van Lint and R. Pellikaan, Algebraic geometry of codes, In Handbook of Coding Theory, V. S. Pless and W. C. Huffman, 1/2 (1998), 871–961.
      M. Kreuzer and L. Robbiano, Computational Commutative Algebra 2, Springer Science & Business Media, 2005.
      D. V. Lee , On the power-series expansion of a rational function, Acta Arithmetica, 62 (1992) , 229-255.  doi: 10.4064/aa-62-3-229-255.
      C. Marcolla , E. Orsini  and  M. Sala , Improved decoding of affine-variety codes, Journal of Pure and Applied Algebra, 216 (2012) , 1533-1565.  doi: 10.1016/j.jpaa.2012.01.002.
      R. Matsumoto , Miura's Generalization of One-Point AG codes is Equivalent to Høholdt, van Lint and Pellikaan's generalization, IEICE Trans. Fund., E82-A.10 (1999) , 2007-2010. 
      R. Matsumoto  and  S. Miura , On the Feng-Rao bound for the L-construction of algebraic geometry codes, IEICE TRANSACTIONS on Fundamentals of Electronics, Communications and Computer Sciences, 83 (2000) , 923-926. 
      S. Miura, Linear Codes on Affine Algebraic Varieties, IEICE Trans. Fundamentals, 1996.
      R. Stanley, Combinatorics and Commutative Algebra, Progress in Mathematics, 41. Birkhäuser Boston, Inc., Boston, MA, 1983.
      J. J. Sylvester , On subvariants, ie semi-invariants to binary quantics of an unlimited order, American Journal of Mathematics, 5 (1882) , 79-136.  doi: 10.2307/2369536.
      J. J. Sylvester , Computational methods in commutative algebra and algebraic geometry, Springer Science & Business Media, 2 (2004) . 
  • 加载中

Article Metrics

HTML views(612) PDF downloads(333) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint