$l$ | $k$ | $d\geq$ |
270 | 3252 | 215 |
260 | 3132 | 425 |
250 | 3012 | 635 |
240 | 2892 | 845 |
230 | 2772 | 1055 |
220 | 2652 | 1265 |
210 | 2532 | 1475 |
We generalize the construction of locally recoverable codes on algebraic curves given by Barg, Tamo and Vlăduţ [
Citation: |
Table 1.
The generalized GK curves
$l$ | $k$ | $d\geq$ |
270 | 3252 | 215 |
260 | 3132 | 425 |
250 | 3012 | 635 |
240 | 2892 | 845 |
230 | 2772 | 1055 |
220 | 2652 | 1265 |
210 | 2532 | 1475 |
M. Abdón
, J. Bezerra
and L. Quoos
, Further examples of maximal curves, Journal of Pure and Applied Algebra, 213 (2009)
, 1192-1196.
doi: 10.1016/j.jpaa.2008.11.037.![]() ![]() ![]() |
|
E. Ballico
and A. Ravagnani
, Embedding Suzuki curves in $\Bbb P^4$, Journal of Commutative Algebra, 7 (2015)
, 149-166.
doi: 10.1216/JCA-2015-7-2-149.![]() ![]() ![]() |
|
A. Barg, K. Haymaker, E. W. Howe, G. L. Matthews and A. Várilly-Alvarado, Locally recoverable codes from algebraic curves and surfaces, Algebraic Geometry for Coding Theory and
Cryptography, (2017), 95–127, arXiv: 1701.05212.
doi: 10.1007/978-3-319-63931-4_4.![]() ![]() |
|
A. Barg, I. Tamo and S. Vlădut¸, Locally recoverable codes on algebraic curves, Proceedings of the IEEE Int. Symp. Info. Theory, (2015), 1252–1256, Extended version: arXiv: 1603.08876.
doi: 10.1109/ISIT.2015.7282656.![]() ![]() |
|
A. Eid and I. Duursma, Smooth embeddings for the Suzuki and Ree curves, Proceedings of the conference on Arithmetic, Geometry and Coding Theory (AGCT 2013), Contemporary Mathematics Series (AMS), 637 (2015), 251–291.
![]() ![]() |
|
A. Garcia
, C. Güneri
and H. Stichtenoth
, A generalization of the Giulietti-Korchmáros maximal curve, Advances in Geometry, 10 (2010)
, 427-434.
![]() ![]() |
|
M. Giulietti
and G. Korchmáros
, A new family of maximal curves over a finite field, Math. Ann., 343 (2009)
, 229-245.
doi: 10.1007/s00208-008-0270-z.![]() ![]() ![]() |
|
M. Giulietti
, G. Korchmáros
and F. Torres
, Quotient curves of the Suzuki curve, Acta Arithmetica, 122 (2006)
, 245-274.
doi: 10.4064/aa122-3-3.![]() ![]() ![]() |
|
R. Guralnick
, B. Malmskog
and R. Pries
, The automorphism groups of a family of maximal curves, Journal of Algebra, 361 (2012)
, 92-106.
doi: 10.1016/j.jalgebra.2012.03.036.![]() ![]() ![]() |
|
J. Hansen, Deligne-Lusztig varieties and group codes, in Coding Theory and Algebraic Geometry, Lecture Notes in Mathematics, 1518 (1992), 63–81.
![]() ![]() |
|
Q. Liu, Algebraic Geometry and Arithmetic Curves, Oxford Graduate Texts in Mathematics, 2002.
![]() ![]() |
|
H.-G. Rück
and H. Stichtenoth
, A characterization of Hermitian function fields over finite fields, J. Reine Angew. Math., 457 (1994)
, 185-188.
![]() ![]() |
|
H. Stichtenoth, Algebraic Function Fields and Codes, Springer-Verlag, Berlin, 2009.
![]() ![]() |
|
G. van der Geer and M. van der Vlugt, How to construct curves over finite fields with many points, in Arithmetic Geometry (Cortona, 1994), Symposia Mathematica Cambridge: Cambridge University Press, 37 (1997), 169–189.
![]() ![]() |
A visualization of points on a fiber product of two curves. Points on the fiber product
The fiber product
Function fields associated with the fiber product.
Generalized GK curve as a fiber product.
Suzuki curve and its quotients used for constructing LRC(2) with balanced recovery sets.
Curves for locally recoverable codes with availability