|
J. Bao
and L. Ji
, Frequency hopping sequences with optimal partial hamming correlation, IEEE Trans. Inf. Theory, 62 (2016)
, 3768-3783.
doi: 10.1109/TIT.2016.2551225.
|
|
J. Bao
and L. Ji
, New families of optimal frequency hopping sequence sets, IEEE Trans. Inf. Theory, 62 (2016)
, 5209-5224.
doi: 10.1109/TIT.2016.2589258.
|
|
Bluetooth Special Interest Group (SIG), Washington, DC, USA. (2003, Nov.). Specification
of the Bluetooth Systems-Core [Online]. Available: http://www.bluetooth.org
|
|
H. Cai
, Z. Zhou
, Y. Yang
and X. Tang
, A new construction of frequency hopping sequences with optimal partial Hamming correlation, IEEE Trans. Inf. Theory, 60 (2014)
, 5782-5790.
doi: 10.1109/TIT.2014.2332996.
|
|
H. Cai
, Y. Yang
, Z. Zhou
and X. Tang
, Strictly optimal frequency-hopping sequence sets with optimal family sizes, IEEE Trans. Inf. Theory, 62 (2016)
, 1087-1093.
doi: 10.1109/TIT.2015.2512859.
|
|
B. Chen
, L. Lin
, S. Ling
and H. Liu
, Three new classes of optimal frequency-hopping sequence sets, Des. Codes Cryptogr., 83 (2017)
, 219-232.
doi: 10.1007/s10623-016-0220-9.
|
|
W. Chu
and C. J. Colbourn
, Optimal frequency-hopping sequences via cyclotomy, IEEE Trans. Inf. Theory, 51 (2005)
, 1139-1141.
doi: 10.1109/TIT.2004.842708.
|
|
J.-H. Chung
, G. Gong
and K. Yang
, New families of optimal frequency-hopping sequences by composite lengths, IEEE Trans. Inf. Theory, 60 (2014)
, 3688-3697.
doi: 10.1109/TIT.2014.2315207.
|
|
J.-H. Chung
, Y. K. Han
and K. Yang
, New classes of optimal frequency-hopping sequences by interleaving techniques, IEEE Trans. Inf. Theory, 55 (2009)
, 5783-5791.
doi: 10.1109/TIT.2009.2032742.
|
|
J.-H. Chung
and K. Yang
, $k$
-fold cyclotomy and its application to frequency-hopping sequences, IEEE Trans. Inf. Theory, 57 (2011)
, 2306-2317.
doi: 10.1109/TIT.2011.2112235.
|
|
J.-H. Chung
and K. Yang
, Optimal frequency-hopping sequences with new parameters, IEEE Trans. Inf. Theory, 56 (2010)
, 1685-1693.
doi: 10.1109/TIT.2010.2040888.
|
|
C. J. Colbourn,
The CRC Handbook of Combinatorial Designs, CRC Press, Boca Raton, FL, 2010.
doi: 10. 1201/9781420049954.
|
|
C. Ding
, R. Fuji-Hara
, Y. Fujiwara
, M. Jimbo
and M. Mishima
, Sets of frequency hopping sequences: Bounds and optimal constructions, IEEE Trans. Inf. Theory, 55 (2009)
, 3297-3304.
doi: 10.1109/TIT.2009.2021366.
|
|
C. Ding
, M. J. Moisio
and J. Yuan
, Algebraic constructions of optimal frequency-hopping sequences, IEEE Trans. Inf. Theory, 53 (2007)
, 2606-2610.
doi: 10.1109/TIT.2007.899545.
|
|
C. Ding
, Y. Yang
and X. Tang
, Optimal sets of frequency hopping sequences from linear cyclic codes, IEEE Trans. Inf. Theory, 56 (2010)
, 3605-3612.
doi: 10.1109/TIT.2010.2048504.
|
|
C. Ding
and J. Yin
, Sets of optimal frequency-hopping sequences, IEEE Trans. Inf. Theory, 54 (2008)
, 3741-3745.
doi: 10.1109/TIT.2008.926410.
|
|
Y.-C. Eun
, S.-Y. Jin
, Y.-P. Hong
and H.-Y. Song
, Frequency hopping sequences with optimal partial autocorrelation properties, IEEE Trans. Inf. Theory, 50 (2004)
, 2438-2442.
doi: 10.1109/TIT.2004.834792.
|
|
C. Fan
, H. Cai
and X. Tang
, A combinatorial construction for strictly optimal frequency-hopping sequences, IEEE Trans. Inf. Theory, 62 (2016)
, 4769-4774.
doi: 10.1109/TIT.2016.2556710.
|
|
P. Fan and M. Darnell,
Sequence Design for Communications Applications, London, U. K. : Wiley, 1996.
|
|
R. Fuji-Hara
, Y. Miao
and M. Mishima
, Optimal frequency hopping sequences: A combinatorial approach, IEEE Trans. Inf. Theory, 50 (2004)
, 2408-2420.
doi: 10.1109/TIT.2004.834783.
|
|
G. Ge
, R. Fuji-Hara
and Y. Miao
, Further combinatorial constructions for optimal frequency-hopping sequences, J. Combin. Theory Ser. A, 113 (2006)
, 1699-1718.
doi: 10.1016/j.jcta.2006.03.019.
|
|
G. Ge
, Y. Miao
and Z. Yao
, Optimal frequency hopping sequences: Auto-and cross-correlation properties, IEEE Trans. Inf. Theory, 55 (2009)
, 867-879.
doi: 10.1109/TIT.2008.2009856.
|
|
A. Lempel
and H. Greenberger
, Families of sequences with optimal Hamming-correlation properties, IEEE Trans. Inf. Theory, 20 (1974)
, 90-94.
|
|
D. Peng
and P. Fan
, Lower bounds on the Hamming auto-and cross correlations of frequency-hopping sequences, IEEE Trans. Inf. Theory, 50 (2004)
, 2149-2154.
doi: 10.1109/TIT.2004.833362.
|
|
W. Ren
, F. Fu
and Z. Zhou
, New sets of frequency-hopping sequences with optimal Hamming correlation, Des. Codes Cryptogr., 72 (2014)
, 423-434.
doi: 10.1007/s10623-012-9774-3.
|
|
P. Udaya
and M. U. Siddiqi
, Optimal large linear complexity frequency hopping patterns derived from polynomial residue class rings, IEEE Trans. Inf. Theory, 44 (1998)
, 1492-1503.
doi: 10.1109/18.681324.
|
|
L. Yang
and G. B. Giannakis
, Ultra-wideband communications: An idea whose time has come, IEEE Signal Process. Mag., 21 (2004)
, 26-54.
|
|
Y. Yang
, X. Tang
, P. Udaya
and D. Peng
, New bound on frequency hopping sequence sets and its optimal constructions, IEEE Trans. Inf. Theory, 57 (2011)
, 7605-7613.
doi: 10.1109/TIT.2011.2162571.
|
|
X. Zeng
, H. Cai
, X. Tang
and Y. Yang
, A class of optimal frequency hopping sequences with new parameters, IEEE Trans. Inf. Theory, 58 (2012)
, 4899-4907.
doi: 10.1109/TIT.2012.2195771.
|
|
X. Zeng
, H. Cai
, X. Tang
and Y. Yang
, Optimal frequency hopping sequences of odd length, IEEE Trans. Inf. Theory, 59 (2013)
, 3237-3248.
doi: 10.1109/TIT.2013.2237754.
|
|
Z. Zhou
, X. Tang
, D. Peng
and U. Parampalli
, New constructions for optimal sets of frequency-hopping sequences, IEEE Trans. Inf. Theory, 57 (2011)
, 3831-3840.
doi: 10.1109/TIT.2011.2137290.
|
|
Z. Zhou
, X. Tang
, X. Niu
and U. Parampalli
, New classes of frequency hopping sequences with optimal partial correlation, IEEE Trans. Inf. Theory, 58 (2012)
, 453-458.
doi: 10.1109/TIT.2011.2167126.
|