\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

New families of strictly optimal frequency hopping sequence sets

The first author is supported by the NSFC under Grants 11701303, and K.C.Wong Magna Fund in Ningbo University

Abstract Full Text(HTML) Figure(0) / Table(3) Related Papers Cited by
  • Frequency hopping sequences (FHSs) with favorable partial Hamming correlation properties have important applications in many synchronization and multiple-access systems. In this paper, we investigate constructions of FHS sets with optimal partial Hamming correlation. We present several direct constructions for balanced nested cyclic difference packings (BNCDPs) and balanced nested cyclic relative difference packings (BNCRDPs) by using trace functions and discrete logarithm. We also show three recursive constructions for FHS sets with partial Hamming correlation, which are based on cyclic difference matrices and discrete logarithm. Combing these BNCDPs, BNCRDPs and three recursive constructions, we obtain infinitely many new strictly optimal FHS sets with respect to the Peng-Fan bounds.

    Mathematics Subject Classification: Primary: 94A55, 94A05; Secondary: 05B40.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Table Ⅰ.  SOME KNOWN FHS SETS WITH OPTIMA HAMMING CORRELATION

    LengthNumber of sequences $H_{max}$Alphabet sizeConstraintsReference
    $p(q-1)$ $\left\lfloor \frac{c}{p}\right\rfloor$ $pd$ $c+1$ $q-1=cd$, $c\geq p(d+1)$, gcd$(p, q-1)=1$[25]
    $q^m-1$ $q^u$ $q^{m-u}$ $q^u$ $m > u \geq 1$[31]
    $\frac{q^m-1}{d}$ $d$ $\frac{q^{m-u}-1}{d}$ $q^u$ $d|q-1$, $ m > u \geq 1$, gcd$(d, m)=1$[31]
    $\frac{q+1}{d}$ $d(q-1)$ $1$ $q$ $q+1\equiv d \pmod {2d}$[15]
    $2^{2u}+1$ $2^{2u}-1$ $2^u+1$ $2^u$[13]
    $up^2$ $\left\lfloor \frac{p}{u}\right\rfloor$ $up$ $p$ $ p>u\geq 2$[9]
    $u\frac{q^m-1}{d}$ $\left\lfloor \frac{d}{u}\right\rfloor$ $u\frac{q^{m-1}-1}{d}$ $q$ $ d\geq u \geq 2$, $d|q-1$, gcd$(m, d)=1$[9]
    $v$ $f$ $e$ $\frac{v-1}{e}+1$ $v$ is not a prime or $v$ is a prime with $f\geq e >1$[30]
    $\frac{w(q^m-1)}{d}$ $d$ $\frac{q^{m-u}-1}{d}$ $wq^u$ $d|q-1$, gcd$(d, m)=1$, $q_1>q^{m-u}$, $m > u \geq 1$[2]
    $vw$ $f$ $e$ $\frac{v-1}{e}w+\frac{w-1}{e^{'}}+1$ $e\geq e'\geq 2$, $v\geq e^2$, $q_1\geq p_1> 2e$[2]
    $vwu(q-1)$ $\lfloor \frac{c}{u}\rfloor$ $ud$ $cvw+\frac{(v-1)w}{e}+\frac{w-1}{e^{'}}+1$ $q-1=cd$, $c\geq u(d+1)$, $d\geq e\geq e'\geq 2$, gcd$(u, q-1)=1$, $q_1 \geq p_1> q-1$[2]
    $vu(q-1)$ $\lfloor\frac{f}{u}\rfloor$ $eu$ $\frac{vq-q}{e}+c+1$ $q-1=cd$, $c \geq u(d+1)$, gcd$(u, q-1)=1$, $q\geq \max\{p_1-1, 4ue\}$, $e\geq d$, $p_1> 2ue$, $v \geq 4e^2u$[2]
    $m, u, c$ and $d$ are positive integers;
    $p$ is a prime and $q$ is a prime power;
    $v$ is an integer with prime factor decomposition $v=p_1^{m_1}p_2^{m_2}\cdots p_s^{m_s}$ with $p_1 <p_2<\ldots<p_s$;
    $e$ is an integer such that $e|gcd(p_1-1, p_2-1, \ldots, p_s-1)$, and $f=\frac{p_1-1}{e}$;
    $w$ is an integer with prime factor decomposition $w=q_1^{n_1}q_2^{n_2}\cdots q_t^{n_t}$ with $q_1<q_2<\ldots<q_t$;
    $e'$ is an integer such that $e'|gcd(q_1-1, q_2-1, \ldots, q_t-1)$
     | Show Table
    DownLoad: CSV

    Table Ⅱ.  SOME KNOWN FHS SETS WITH OPTIMAL PARTIAL HAMMING CORRELATION

    LengthAlphabet size $H_{max}$ over correlation window of length LNumber of sequencesConstraintsSource
    $\frac{q^m-1}{d}$ $q^{m-1}$ $\left\lceil \frac{L(q-1)}{q^m-1}\right\rceil$ $d$ $d|(q-1)$, gcd$(d, m)=1$[32]
    $ev$ $v$ $\left\lceil \frac{L}{v}\right\rceil$ $f$[4]
    $ p(p^m-1)$ $p^{m}$ $\left\lceil\frac{L}{p^{m}-1}\right\rceil$ $p^{m-1}$ $m\geq 2$[5]
    $evw$ $(v-1)w+\frac{ew}{r}$ $\left\lceil \frac{L}{vw}\right\rceil$ $f$ $q_1\geq p_1>2e$, $r|e$ $v\geq \frac{p_1e}{r}$ and $gcd(w, e)=1$[1]
    $v\frac{q^m-1}{d}$ $vq^{m-1} $ $\left\lceil \frac{(q-1)L}{v(q^{m}-1)}\right\rceil$ $d$ $m>1, $ $q^m \leq p_1$ and $gcd(d, m)=1, $ $d|q-1$, $\frac{q^m-1}{d}|p_i-1$ for $1\leq i \leq s$[1]
    $q$ is a prime power and $p$ is a prime;
    $v$ is an integer with prime factor decomposition $v=p_1^{m_1}p_2^{m_2}\cdots p_s^{m_s}$ with $p_1 < p_2<\cdots <p_s$;
    $e, f$ are integers such that $e>1$ and $e|gcd(p_1-1, p_2-1, \ldots, p_s-1)$, and $f=\frac{p_1-1}{e}$;
    $w$ is an integer with prime factor decomposition $w=q_1^{n_1}q_2^{n_2}\cdots q_t^{n_t}$ with $q_1<q_2<\cdots <q_t$;
    $r$ is an integer such that $r>1$ and $r|gcd(q_1-1, q_2-1, \ldots, q_t-1)$;
    $d, m$ are positive integers.
     | Show Table
    DownLoad: CSV

    Table Ⅲ.  NEW FHS SETS WITH OPTIMAL PARTIAL HAMMING CORRELATION

    LengthAlphabet size $H_{max}$Number of sequencesConstraintsReference
    $\frac{w(q^m-1)}{d}$ $(q^{m-1}-1+\frac{q-1}{d})w$ $\frac{q-1}{d}$ $d$ $m\geq 3$, $d|q-1$, gcd$(m, d)=1$, $q_1>q, $Corollary 6
    $wp(p^m-1)$ $p^{m}w$ $p$ $p^{m-1}$ $m>1, \ $ and $q_1>p^m, $Corollary 7
    $ewv$ $(v-1+e)w$ $e$ $f$ $q_1>p_1-1$, If $v$ is not a prime with $f>1$ or $v$ is a prime with $f\geq e$, Corollary 8
    $pv(p^m-1)$ $vp^m$ $p$ $f_1$ $p|p_i-1$, $f_1=\frac{p_1-1}{p}\geq 2$, $p^m >p_1-1$, $p^m>2(1+p)$Corollary 9
    $(q'-1)\frac{q^m-1}{d}$ $(q^{m-1}-1+\frac{q-1}{d})q'$ $\frac{q-1}{d}$ $d$ $d|q-1$, gcd$(m, d)=1$, $d\geq 2$ $gcd(q'-1, \frac{q-1}{d})=1$, $q'>q+1$Corollary 10
    $(q-1)p(p^m-1)$ $p^{m}q$ $p$ $p^{m-1}$ $p^{m}-3p\geq 1$, $q\geq p^m$, $gcd(q-1, p)=1$, $m>1$Corollary 11
    $ev(q-1)$ $(v-1+e)q$ $e$ $f$ $q> p_1-1$, $v\geq e^3f^2$, $q\geq 2e+5$, $gcd(q-1, e)=1$, $f>1$Corollary 12
    $q, q'$ are prime powers and $p$ is a prime;
    $v$ is an integer with prime factor decomposition $v=p_1^{m_1}p_2^{m_2}\cdots p_s^{m_s}$ with $p_1 < p_2<\ldots<p_s$;
    $e$ is an integer such that $e| gcd(p_1-1, p_2-1, \ldots, p_s-1)$, and $f=\frac{p_1-1}{e}$;
    $w$ is any an integer with prime factor decomposition $w=q_1^{n_1}q_2^{n_2}\cdots q_t^{n_t}$ with $q_1<q_2<\ldots<q_t$;
    $d, m$ are positive integers.
     | Show Table
    DownLoad: CSV
  •   J. Bao  and  L. Ji , Frequency hopping sequences with optimal partial hamming correlation, IEEE Trans. Inf. Theory, 62 (2016) , 3768-3783.  doi: 10.1109/TIT.2016.2551225.
      J. Bao  and  L. Ji , New families of optimal frequency hopping sequence sets, IEEE Trans. Inf. Theory, 62 (2016) , 5209-5224.  doi: 10.1109/TIT.2016.2589258.
      Bluetooth Special Interest Group (SIG), Washington, DC, USA. (2003, Nov.). Specification of the Bluetooth Systems-Core [Online]. Available: http://www.bluetooth.org
      H. Cai , Z. Zhou , Y. Yang  and  X. Tang , A new construction of frequency hopping sequences with optimal partial Hamming correlation, IEEE Trans. Inf. Theory, 60 (2014) , 5782-5790.  doi: 10.1109/TIT.2014.2332996.
      H. Cai , Y. Yang , Z. Zhou  and  X. Tang , Strictly optimal frequency-hopping sequence sets with optimal family sizes, IEEE Trans. Inf. Theory, 62 (2016) , 1087-1093.  doi: 10.1109/TIT.2015.2512859.
      B. Chen , L. Lin , S. Ling  and  H. Liu , Three new classes of optimal frequency-hopping sequence sets, Des. Codes Cryptogr., 83 (2017) , 219-232.  doi: 10.1007/s10623-016-0220-9.
      W. Chu  and  C. J. Colbourn , Optimal frequency-hopping sequences via cyclotomy, IEEE Trans. Inf. Theory, 51 (2005) , 1139-1141.  doi: 10.1109/TIT.2004.842708.
      J.-H. Chung , G. Gong  and  K. Yang , New families of optimal frequency-hopping sequences by composite lengths, IEEE Trans. Inf. Theory, 60 (2014) , 3688-3697.  doi: 10.1109/TIT.2014.2315207.
      J.-H. Chung , Y. K. Han  and  K. Yang , New classes of optimal frequency-hopping sequences by interleaving techniques, IEEE Trans. Inf. Theory, 55 (2009) , 5783-5791.  doi: 10.1109/TIT.2009.2032742.
      J.-H. Chung  and  K. Yang , $k$ -fold cyclotomy and its application to frequency-hopping sequences, IEEE Trans. Inf. Theory, 57 (2011) , 2306-2317.  doi: 10.1109/TIT.2011.2112235.
      J.-H. Chung  and  K. Yang , Optimal frequency-hopping sequences with new parameters, IEEE Trans. Inf. Theory, 56 (2010) , 1685-1693.  doi: 10.1109/TIT.2010.2040888.
      C. J. Colbourn, The CRC Handbook of Combinatorial Designs, CRC Press, Boca Raton, FL, 2010. doi: 10. 1201/9781420049954.
      C. Ding , R. Fuji-Hara , Y. Fujiwara , M. Jimbo  and  M. Mishima , Sets of frequency hopping sequences: Bounds and optimal constructions, IEEE Trans. Inf. Theory, 55 (2009) , 3297-3304.  doi: 10.1109/TIT.2009.2021366.
      C. Ding , M. J. Moisio  and  J. Yuan , Algebraic constructions of optimal frequency-hopping sequences, IEEE Trans. Inf. Theory, 53 (2007) , 2606-2610.  doi: 10.1109/TIT.2007.899545.
      C. Ding , Y. Yang  and  X. Tang , Optimal sets of frequency hopping sequences from linear cyclic codes, IEEE Trans. Inf. Theory, 56 (2010) , 3605-3612.  doi: 10.1109/TIT.2010.2048504.
      C. Ding  and  J. Yin , Sets of optimal frequency-hopping sequences, IEEE Trans. Inf. Theory, 54 (2008) , 3741-3745.  doi: 10.1109/TIT.2008.926410.
      Y.-C. Eun , S.-Y. Jin , Y.-P. Hong  and  H.-Y. Song , Frequency hopping sequences with optimal partial autocorrelation properties, IEEE Trans. Inf. Theory, 50 (2004) , 2438-2442.  doi: 10.1109/TIT.2004.834792.
      C. Fan , H. Cai  and  X. Tang , A combinatorial construction for strictly optimal frequency-hopping sequences, IEEE Trans. Inf. Theory, 62 (2016) , 4769-4774.  doi: 10.1109/TIT.2016.2556710.
      P. Fan and M. Darnell, Sequence Design for Communications Applications, London, U. K. : Wiley, 1996.
      R. Fuji-Hara , Y. Miao  and  M. Mishima , Optimal frequency hopping sequences: A combinatorial approach, IEEE Trans. Inf. Theory, 50 (2004) , 2408-2420.  doi: 10.1109/TIT.2004.834783.
      G. Ge , R. Fuji-Hara  and  Y. Miao , Further combinatorial constructions for optimal frequency-hopping sequences, J. Combin. Theory Ser. A, 113 (2006) , 1699-1718.  doi: 10.1016/j.jcta.2006.03.019.
      G. Ge , Y. Miao  and  Z. Yao , Optimal frequency hopping sequences: Auto-and cross-correlation properties, IEEE Trans. Inf. Theory, 55 (2009) , 867-879.  doi: 10.1109/TIT.2008.2009856.
      A. Lempel  and  H. Greenberger , Families of sequences with optimal Hamming-correlation properties, IEEE Trans. Inf. Theory, 20 (1974) , 90-94. 
      D. Peng  and  P. Fan , Lower bounds on the Hamming auto-and cross correlations of frequency-hopping sequences, IEEE Trans. Inf. Theory, 50 (2004) , 2149-2154.  doi: 10.1109/TIT.2004.833362.
      W. Ren , F. Fu  and  Z. Zhou , New sets of frequency-hopping sequences with optimal Hamming correlation, Des. Codes Cryptogr., 72 (2014) , 423-434.  doi: 10.1007/s10623-012-9774-3.
      P. Udaya  and  M. U. Siddiqi , Optimal large linear complexity frequency hopping patterns derived from polynomial residue class rings, IEEE Trans. Inf. Theory, 44 (1998) , 1492-1503.  doi: 10.1109/18.681324.
      L. Yang  and  G. B. Giannakis , Ultra-wideband communications: An idea whose time has come, IEEE Signal Process. Mag., 21 (2004) , 26-54. 
      Y. Yang , X. Tang , P. Udaya  and  D. Peng , New bound on frequency hopping sequence sets and its optimal constructions, IEEE Trans. Inf. Theory, 57 (2011) , 7605-7613.  doi: 10.1109/TIT.2011.2162571.
      X. Zeng , H. Cai , X. Tang  and  Y. Yang , A class of optimal frequency hopping sequences with new parameters, IEEE Trans. Inf. Theory, 58 (2012) , 4899-4907.  doi: 10.1109/TIT.2012.2195771.
      X. Zeng , H. Cai , X. Tang  and  Y. Yang , Optimal frequency hopping sequences of odd length, IEEE Trans. Inf. Theory, 59 (2013) , 3237-3248.  doi: 10.1109/TIT.2013.2237754.
      Z. Zhou , X. Tang , D. Peng  and  U. Parampalli , New constructions for optimal sets of frequency-hopping sequences, IEEE Trans. Inf. Theory, 57 (2011) , 3831-3840.  doi: 10.1109/TIT.2011.2137290.
      Z. Zhou , X. Tang , X. Niu  and  U. Parampalli , New classes of frequency hopping sequences with optimal partial correlation, IEEE Trans. Inf. Theory, 58 (2012) , 453-458.  doi: 10.1109/TIT.2011.2167126.
  • 加载中

Tables(3)

SHARE

Article Metrics

HTML views(806) PDF downloads(473) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return