• PDF
• Cite
• Share
Article Contents  Article Contents

# A note on some algebraic trapdoors for block ciphers

• We provide sufficient conditions to guarantee that a translation based cipher is not vulnerable with respect to the partition-based trapdoor. This trapdoor has been introduced, recently, by Bannier et al. (2016) and it generalizes that introduced by Paterson in 1999. Moreover, we discuss the fact that studying the group generated by the round functions of a block cipher may not be sufficient to guarantee security against these trapdoors for the cipher.

Mathematics Subject Classification: Primary: 94A60, 20B15; Secondary: 20B35.

 Citation: • • Table 1.  AES state

 $V_1$ $V_2$ $V_3$ $V_4$ $V_5$ $V_6$ $V_7$ $V_8$ $V_9$ $V_{10}$ $V_{11}$ $V_{12}$ $V_{13}$ $V_{14}$ $V_{15}$ $V_{16}$

Table 2.  AES wall

 $\color{orange}{V_1}$ $V_2$ $V_3$ $V_4$ $\color{orange}{V_1}$ $V_2$ $V_3$ $V_4$ $\color{orange}{V_1}$ $V_2$ $V_3$ $V_4$ $V_5$ $\color{orange}{V_6}$ $V_7$ $V_8$ $\mathop {SR}\limits_ \mapsto$ $\color{orange}{V_5}$ $V_6$ $V_7$ $V_8$ $\mathop {MC}\limits_ \mapsto$ $\color{orange}{V_5}$ $V_6$ $V_7$ $V_8$ $V_9$ $V_{10}$ $\color{orange}{V_{11}}$ $V_{12}$ $\color{orange}{V_9}$ $V_{10}$ $V_{11}$ $V_{12}$ $\color{orange}{V_9}$ $V_{10}$ $V_{11}$ $V_{12}$ $V_{13}$ $V_{14}$ $V_{15}$ $\color{orange}{V_{16}}$ $\color{orange}{V_{13}}$ $V_{14}$ $V_{15}$ $V_{16}$ $\color{orange}{V_{13}}$ $V_{14}$ $V_{15}$ $V_{16}$
• Tables(2)

## Article Metrics  DownLoad:  Full-Size Img  PowerPoint