November  2018, 12(4): 641-657. doi: 10.3934/amc.2018038

$ {{\mathbb{Z}}_{2}}{{\mathbb{Z}}_{2}}{{\mathbb{Z}}_{4}}$-additive cyclic codes

1. 

College of Science, Civil Aviation University of China, Tianjin 300300, China

2. 

School of Mathematics and Statistics, Shandong University of Technology, Zibo, Shandong 255091, China

3. 

Chern Institute of Mathematics and LPMC, Nankai University, Tianjin 300071, China

* Corresponding author: Jian Gao

Received  April 2016 Published  September 2018

Fund Project: This research is supported by the National Natural Science Foundation of China (Grant Nos. 11701336, 11626144, 11671235, 61571243 and 61171082), the Scientific Research Foundation of Civil Aviation University of China (Grant No. 2017QD22X).

This paper is concerned with ${{\mathbb{Z}}_{2}}{{\mathbb{Z}}_{2}}{{\mathbb{Z}}_{4}}$-additive cyclic codes. These codes can be identified as submodules of the ring ${\mathbb{Z}}_{2}[x]/\langle x^r-1\rangle × {\mathbb{Z}}_{2}[x]/\langle x^s-1\rangle × {\mathbb{Z}}_{4}[x]/\langle x^t-1\rangle$. There are two major ingredients. First, we determine the generator polynomials and minimum generating sets of this kind of codes. Furthermore, we investigate their dual codes. We determine the structure of the dual of separable ${{\mathbb{Z}}_{2}}{{\mathbb{Z}}_{2}}{{\mathbb{Z}}_{4}}$-additive cyclic codes completely. For the dual of non-separable ${{\mathbb{Z}}_{2}}{{\mathbb{Z}}_{2}}{{\mathbb{Z}}_{4}}$-additive cyclic codes, we give their structural properties in a few special cases.

Citation: Tingting Wu, Jian Gao, Yun Gao, Fang-Wei Fu. $ {{\mathbb{Z}}_{2}}{{\mathbb{Z}}_{2}}{{\mathbb{Z}}_{4}}$-additive cyclic codes. Advances in Mathematics of Communications, 2018, 12 (4) : 641-657. doi: 10.3934/amc.2018038
References:
[1]

T. AbualrubI. Siap and N. Aydin, $ \mathbb{Z}_2\mathbb{Z}_4$-additive cyclic codes, IEEE Trans. Inform. Theory, 60 (2014), 1508-1514.  doi: 10.1109/TIT.2014.2299791.

[2]

I. AydogduT. Abualrub and I. Siap, $ \mathbb{Z}_2\mathbb{Z}_2[u]$-additive codes, Int. J. Comput. Math., 92 (2015), 1806-1814.  doi: 10.1080/00207160.2013.859854.

[3]

I. Aydogdu and I. Siap, On $ \mathbb{Z}_{p^r}\mathbb{Z}_{p^s}$-additive codes, Linear and Multilinear Algebra, 63 (2015), 2089-2102.  doi: 10.1080/03081087.2014.952728.

[4]

J. BorgesC. Fernández-CórdobaJ. Pujol and J. Rifà, $ \mathbb{Z}_2\mathbb{Z}_4$-linear codes: Geneartor matrices and duality, Des. Codes Cryptogr., 54 (2009), 167-179.  doi: 10.1007/s10623-009-9316-9.

[5]

J. BorgesC. Fernández-Córdoba and R. Ten-Valls, $ \mathbb{Z}_2$-double cyclic codes, Des.Codes Cryptogr., 86 (2018), 463-479.  doi: 10.1007/s10623-017-0334-8.

[6]

P. Delsarte, An algebraic approach to the association schemes of coding theory, Philips Res. Reports Suppl., 10 (1973), vi+97 pp.

[7]

C. Fernández-CórdobaJ. Pujol and M. Villanueva, $ {\mathbb{Z}}_{2}{\mathbb{Z}}_{4}$-linear coes: Rank and kernel, Des. Codes Cryptogr., 56 (2010), 43-59.  doi: 10.1007/s10623-009-9340-9.

[8]

J. GaoM. ShiT. Wu and F.-W. Fu, On double cyclic codes over $ \mathbb{Z}_4$, Finite Fields Appl., 39 (2016), 233-250.  doi: 10.1016/j.ffa.2016.02.003.

[9]

W. C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes, Cambridge University Press, 2003. doi: 10.1017/CBO9780511807077.

[10]

H. Mostafanasab, Triple cyclic codes over $ \mathbb{Z}_2$, Palest. J. Math., 6 (2017), Special Issue Ⅱ, 123–134, arXiv: 1509.05351.

[11]

M. ShiP. Solé and B. Wu, Cyclic codes and the weight enumerators of linear codes over $ \mathbb{F}_2 + v\mathbb{F}_2 + v^2\mathbb{F}_2$, Applied and Computational Mathematics, 12 (2013), 247-255. 

[12]

M. Shi and Y. Zhang, Quasi-twisted codes with constacyclic constituent codes, Finite Fields Appl., 39 (2016), 159-178.  doi: 10.1016/j.ffa.2016.01.010.

[13]

M. ShiL. QianS. LinN. Aydin and P. Solé, On constacyclic codes over $ \mathbb{Z}_4[u]/\langle u^2-1 \rangle$ and their Gray images, Finite Fields Appl., 45 (2017), 86-95.  doi: 10.1016/j.ffa.2016.11.016.

[14]

Z.-X. Wan, Quaternary Codes, World Scientific, Singapore, 1997. doi: 10.1142/3603.

show all references

References:
[1]

T. AbualrubI. Siap and N. Aydin, $ \mathbb{Z}_2\mathbb{Z}_4$-additive cyclic codes, IEEE Trans. Inform. Theory, 60 (2014), 1508-1514.  doi: 10.1109/TIT.2014.2299791.

[2]

I. AydogduT. Abualrub and I. Siap, $ \mathbb{Z}_2\mathbb{Z}_2[u]$-additive codes, Int. J. Comput. Math., 92 (2015), 1806-1814.  doi: 10.1080/00207160.2013.859854.

[3]

I. Aydogdu and I. Siap, On $ \mathbb{Z}_{p^r}\mathbb{Z}_{p^s}$-additive codes, Linear and Multilinear Algebra, 63 (2015), 2089-2102.  doi: 10.1080/03081087.2014.952728.

[4]

J. BorgesC. Fernández-CórdobaJ. Pujol and J. Rifà, $ \mathbb{Z}_2\mathbb{Z}_4$-linear codes: Geneartor matrices and duality, Des. Codes Cryptogr., 54 (2009), 167-179.  doi: 10.1007/s10623-009-9316-9.

[5]

J. BorgesC. Fernández-Córdoba and R. Ten-Valls, $ \mathbb{Z}_2$-double cyclic codes, Des.Codes Cryptogr., 86 (2018), 463-479.  doi: 10.1007/s10623-017-0334-8.

[6]

P. Delsarte, An algebraic approach to the association schemes of coding theory, Philips Res. Reports Suppl., 10 (1973), vi+97 pp.

[7]

C. Fernández-CórdobaJ. Pujol and M. Villanueva, $ {\mathbb{Z}}_{2}{\mathbb{Z}}_{4}$-linear coes: Rank and kernel, Des. Codes Cryptogr., 56 (2010), 43-59.  doi: 10.1007/s10623-009-9340-9.

[8]

J. GaoM. ShiT. Wu and F.-W. Fu, On double cyclic codes over $ \mathbb{Z}_4$, Finite Fields Appl., 39 (2016), 233-250.  doi: 10.1016/j.ffa.2016.02.003.

[9]

W. C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes, Cambridge University Press, 2003. doi: 10.1017/CBO9780511807077.

[10]

H. Mostafanasab, Triple cyclic codes over $ \mathbb{Z}_2$, Palest. J. Math., 6 (2017), Special Issue Ⅱ, 123–134, arXiv: 1509.05351.

[11]

M. ShiP. Solé and B. Wu, Cyclic codes and the weight enumerators of linear codes over $ \mathbb{F}_2 + v\mathbb{F}_2 + v^2\mathbb{F}_2$, Applied and Computational Mathematics, 12 (2013), 247-255. 

[12]

M. Shi and Y. Zhang, Quasi-twisted codes with constacyclic constituent codes, Finite Fields Appl., 39 (2016), 159-178.  doi: 10.1016/j.ffa.2016.01.010.

[13]

M. ShiL. QianS. LinN. Aydin and P. Solé, On constacyclic codes over $ \mathbb{Z}_4[u]/\langle u^2-1 \rangle$ and their Gray images, Finite Fields Appl., 45 (2017), 86-95.  doi: 10.1016/j.ffa.2016.11.016.

[14]

Z.-X. Wan, Quaternary Codes, World Scientific, Singapore, 1997. doi: 10.1142/3603.

[1]

Habibul Islam, Om Prakash, Patrick Solé. $ \mathbb{Z}_{4}\mathbb{Z}_{4}[u] $-additive cyclic and constacyclic codes. Advances in Mathematics of Communications, 2021, 15 (4) : 737-755. doi: 10.3934/amc.2020094

[2]

Yuan Cao, Yonglin Cao, Hai Q. Dinh, Ramakrishna Bandi, Fang-Wei Fu. An explicit representation and enumeration for negacyclic codes of length $ 2^kn $ over $ \mathbb{Z}_4+u\mathbb{Z}_4 $. Advances in Mathematics of Communications, 2021, 15 (2) : 291-309. doi: 10.3934/amc.2020067

[3]

Raj Kumar, Maheshanand Bhaintwal. Duadic codes over $ \mathbb{Z}_4+u\mathbb{Z}_4 $. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020135

[4]

Om Prakash, Shikha Yadav, Habibul Islam, Patrick Solé. On $ \mathbb{Z}_4\mathbb{Z}_4[u^3] $-additive constacyclic codes. Advances in Mathematics of Communications, 2022  doi: 10.3934/amc.2022017

[5]

Raziyeh Molaei, Kazem Khashyarmanesh. $ \mathbb{Z}_{p^r}\mathbb{Z}_{p^s}\mathbb{Z}_{p^t} $-additive cyclic codes. Advances in Mathematics of Communications, 2022  doi: 10.3934/amc.2022079

[6]

Lingyu Diao, Jian Gao, Jiyong Lu. Some results on $ \mathbb{Z}_p\mathbb{Z}_p[v] $-additive cyclic codes. Advances in Mathematics of Communications, 2020, 14 (4) : 555-572. doi: 10.3934/amc.2020029

[7]

Joaquim Borges, Cristina Fernández-Córdoba, Roger Ten-Valls. On ${{\mathbb{Z}}}_{p^r}{{\mathbb{Z}}}_{p^s}$-additive cyclic codes. Advances in Mathematics of Communications, 2018, 12 (1) : 169-179. doi: 10.3934/amc.2018011

[8]

Jie Geng, Huazhang Wu, Patrick Solé. On one-lee weight and two-lee weight $ \mathbb{Z}_2\mathbb{Z}_4[u] $ additive codes and their constructions. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021046

[9]

Helena Rifà-Pous, Josep Rifà, Lorena Ronquillo. $\mathbb{Z}_2\mathbb{Z}_4$-additive perfect codes in Steganography. Advances in Mathematics of Communications, 2011, 5 (3) : 425-433. doi: 10.3934/amc.2011.5.425

[10]

Joaquim Borges, Steven T. Dougherty, Cristina Fernández-Córdoba. Characterization and constructions of self-dual codes over $\mathbb Z_2\times \mathbb Z_4$. Advances in Mathematics of Communications, 2012, 6 (3) : 287-303. doi: 10.3934/amc.2012.6.287

[11]

Jean-Claude Bajard, Jérémy Marrez, Thomas Plantard, Pascal Véron. On Polynomial Modular Number Systems over $ \mathbb{Z}/{p}\mathbb{Z} $. Advances in Mathematics of Communications, 2022  doi: 10.3934/amc.2022018

[12]

Junchao Zhou, Yunge Xu, Lisha Wang, Nian Li. Nearly optimal codebooks from generalized Boolean bent functions over $ \mathbb{Z}_{4} $. Advances in Mathematics of Communications, 2022, 16 (3) : 485-501. doi: 10.3934/amc.2020121

[13]

Makoto Araya, Masaaki Harada, Hiroki Ito, Ken Saito. On the classification of $\mathbb{Z}_4$-codes. Advances in Mathematics of Communications, 2017, 11 (4) : 747-756. doi: 10.3934/amc.2017054

[14]

Amit Sharma, Maheshanand Bhaintwal. A class of skew-cyclic codes over $\mathbb{Z}_4+u\mathbb{Z}_4$ with derivation. Advances in Mathematics of Communications, 2018, 12 (4) : 723-739. doi: 10.3934/amc.2018043

[15]

Masaaki Harada. Note on the residue codes of self-dual $\mathbb{Z}_4$-codes having large minimum Lee weights. Advances in Mathematics of Communications, 2016, 10 (4) : 695-706. doi: 10.3934/amc.2016035

[16]

Hengming Zhao, Rongcun Qin, Dianhua Wu. Balanced ($\mathbb{Z} _{2u}\times \mathbb{Z}_{38v}$, {3, 4, 5}, 1) difference packings and related codes. Advances in Mathematics of Communications, 2022  doi: 10.3934/amc.2022008

[17]

Thomas Feulner. Canonization of linear codes over $\mathbb Z$4. Advances in Mathematics of Communications, 2011, 5 (2) : 245-266. doi: 10.3934/amc.2011.5.245

[18]

Steven T. Dougherty, Cristina Fernández-Córdoba. Codes over $\mathbb{Z}_{2^k}$, Gray map and self-dual codes. Advances in Mathematics of Communications, 2011, 5 (4) : 571-588. doi: 10.3934/amc.2011.5.571

[19]

Michael Kiermaier, Johannes Zwanzger. A $\mathbb Z$4-linear code of high minimum Lee distance derived from a hyperoval. Advances in Mathematics of Communications, 2011, 5 (2) : 275-286. doi: 10.3934/amc.2011.5.275

[20]

Roghayeh Mohammadi Hesari, Mahboubeh Hosseinabadi, Rashid Rezaei, Karim Samei. $\mathbb{F}_{p^{m}}\mathbb{F}_{p^{m}}{[u^2]}$-additive skew cyclic codes of length $2p^s $. Advances in Mathematics of Communications, 2022  doi: 10.3934/amc.2022023

2021 Impact Factor: 1.015

Metrics

  • PDF downloads (514)
  • HTML views (410)
  • Cited by (1)

Other articles
by authors

[Back to Top]