Self-duality of Gabidulin codes was investigated in [
Citation: |
L. Carlitz
, A note on the Betti-Mathieu group, Portugaliae Math., 22 (1963)
, 121-125.
![]() |
|
A. Cossidente
, G. Marino
and F. Pavese
, Non-linear maximum rank distance codes, Des. Codes Cryptogr., 79 (2016)
, 597-609.
doi: 10.1007/s10623-015-0108-0.![]() ![]() ![]() |
|
P. Delsarte
, Bilinear forms over a finite field, with applications to coding theory, J. Comb. Theory A, 25 (1978)
, 226-241.
doi: 10.1016/0097-3165(78)90015-8.![]() ![]() ![]() |
|
L. E. Dickson
, The analytic representation of substitutions on a power of a prime number of letters with a discussion of the linear group, Ann. Math., 11 (1896)
, 65-120.
doi: 10.2307/1967217.![]() ![]() ![]() |
|
N. Durante and A. Siciliano, Non-linear maximum rank distance codes in the cyclic model for the field reduction of finite geometries, Electron. J. Comb., 24 (2017), Paper 2.33, 18 pp.
![]() ![]() |
|
E. M. Gabidulin
, The theory with maximal rank metric distance, Probl. Inform. Transm., 21 (1985)
, 1-12.
![]() |
|
A. Kshevetskiy and E. Gabidulin, The new construction of rank codes, Proceedings of Int. Symp. on Inf. Theory, (ISIT 2005), 2105-2108.
![]() |
|
R. Lidl and H. Niederreither, Introduction to Finite Fields and Their Applications, Revised Edition, Cambridge University Press, Cambridge, 1994.
doi: 10.1017/CBO9781139172769.![]() ![]() ![]() |
|
G. Lunardon, R. Trombetti and Y. Zhou, Generalized twisted Gabidulin codes, arXiv: 1507.07855v2.
![]() |
|
G. Nebe
and W. Willems
, On self-dual MRD codes, Adv. in Math. of Comm., 10 (2016)
, 633-642.
doi: 10.3934/amc.2016031.![]() ![]() ![]() |
|
K. Otal
and F. Özbudak
, Explicit constructions of some non-Gabidulin linear MRD codes, Adv. in Math. of Comm., 10 (2016)
, 589-600.
doi: 10.3934/amc.2016028.![]() ![]() ![]() |
|
K. Otal
and F. Özbudak
, Additive rank metric codes, IEEE Trans. Inf. Theory, 63 (2017)
, 164-168.
doi: 10.1109/TIT.2016.2622277.![]() ![]() ![]() |
|
K. Otal
and F. Özbudak
, Some new non-additive maximum rank distance codes, Finite Fields Appl., 50 (2018)
, 293-303.
doi: 10.1016/j.ffa.2017.12.003.![]() ![]() ![]() |
|
A. Ravagnani
, Rank-metric codes and their duality theory, Des. Codes Cryptogr., 80 (2016)
, 197-216.
doi: 10.1007/s10623-015-0077-3.![]() ![]() ![]() |
|
J. Sheekey
, A new family of linear maximum rank distance codes, Adv. in Math. of Comm., 10 (2016)
, 475-488.
doi: 10.3934/amc.2016019.![]() ![]() ![]() |
|
Z.-X. Wan,
Geometry of Matrices, In memory of Professor L.K. Hua (1910-1985), World Scientific, Singapore, 1996.
doi: 10.1142/9789812830234.![]() ![]() ![]() |
|
B. Wu
and Z. Liu
, Linearized polynomials over finite fields revisited, Finite Fields Appl., 22 (2013)
, 79-100.
doi: 10.1016/j.ffa.2013.03.003.![]() ![]() ![]() |