February  2019, 13(1): 1-10. doi: 10.3934/amc.2019001

Strongly secure quantum ramp secret sharing constructed from algebraic curves over finite fields

1. 

Department of Information and Communication Engineering, Nagoya University, Nagoya, Aichi 464-8603, Japan

2. 

Department of Mathematical Sciences, Aalborg University, Denmark

* Corresponding author

Received  March 2015 Published  December 2018

Fund Project: This research is partly supported by the National Institute of Information and Communications Technology, Japan, and by the Japan Society for the Promotion of Science Grant Nos. 23246071 and 26289116, and the Villum Foundation through their VELUX Visiting Professor Programme 2013-2014.

The first construction of strongly secure quantum ramp secret sharing by Zhang and Matsumoto had an undesirable feature that the dimension of quantum shares must be larger than the number of shares. By using algebraic curves over finite fields, we propose a new construction in which the number of shares can become arbitrarily large for fixed dimension of shares.

Citation: Ryutaroh Matsumoto. Strongly secure quantum ramp secret sharing constructed from algebraic curves over finite fields. Advances in Mathematics of Communications, 2019, 13 (1) : 1-10. doi: 10.3934/amc.2019001
References:
[1]

G. R. Blakley and C. Meadows, Security of ramp schemes, in Advances in Cryptology-CRYPTO'84, vol. 196 of Lecture Notes in Computer Science, Springer-Verlag, 1985, 242-269. doi: 10.1007/3-540-39568-7_20.  Google Scholar

[2]

A. Bogdanov, S. Guo and I. Komargodski, Threshold secret sharing requires a linear size alphabet, in Theory of Cryptography (eds. M. Hirt and A. Smith), Springer Berlin Heidelberg, Berlin, Heidelberg, 9986 (2016), 471-484. doi: 10.1007/978-3-662-53644-5_18.  Google Scholar

[3]

I. CascudoR. Cramer and C. Xing, Bounds on the threshold gap in secret sharing and its applications, IEEE Trans. Inform. Theory, 59 (2013), 5600-5612.  doi: 10.1109/TIT.2013.2264504.  Google Scholar

[4]

I. Cascudo, J. Skovsted Gundersen and D. Ruano, Improved bounds on the threashold gap in ramp secret sharing, 2018, Cryptology ePrint Archive 2018/099. Google Scholar

[5]

H. Chen and R. Cramer, Algebraic geometric secret sharing schemes and secure multi-party computations over small fields, in Advances in Cryptology - CRYPT 2006 (ed. C. Dwork), vol. 4117 of Lecture Notes in Computer Science, Springer-Verlag, 2006, 521-536. doi: 10.1007/11818175_31.  Google Scholar

[6]

H. Chen, R. Cramer, R. de Haan and I. Cascudo Pueyo, Strongly multiplicative ramp schemes from high degree rational points on curves, in Advances in Cryptology - EUROCRYPT 2008 (ed. N. Smart), vol. 4965 of Lecture Notes in Computer Science, Springer-Verlag, 2008, 451-470 doi: 10.1007/978-3-540-78967-3_26.  Google Scholar

[7]

R. CleveD. Gottesman and H.-K. Lo, How to share a quantum secret, Phys. Rev. Lett., 83 (1999), 648-651.  doi: 10.1103/PhysRevLett.83.648.  Google Scholar

[8]

D. Gottesman, Theory of quantum secret sharing, Phys. Rev. A, 61 (2000), 042311.  doi: 10.1103/PhysRevA.61.042311.  Google Scholar

[9]

M. Iwamoto and H. Yamamoto, Strongly secure ramp secret sharing schemes for general access structures, Inform. Process. Lett., 97 (2006), 52-57.  doi: 10.1016/j.ipl.2005.09.012.  Google Scholar

[10]

R. Matsumoto, Coding theoretic construction of quantum ramp secret sharing, IEICE Trans. Fundamentals, E101-A (2018), 1215-1222.  doi: 10.1587/transfun.E101.A.1215.  Google Scholar

[11]

R. Matsumoto, Strong security of the strongly multiplicative ramp secret sharing based on algebraic curves, IEICE Trans. Fundamentals, E98-A (2015), 1576-1578.  doi: 10.1587/transfun.E98.A.1576.  Google Scholar

[12]

R. J. McEliece and D. V. Sarwate, On sharing secrets and Reed-Solomon codes, Comm. ACM, 24 (1981), 583-584.  doi: 10.1145/358746.358762.  Google Scholar

[13]

T. OgawaA. SasakiM. Iwamoto and H Yamamoto, Quantum secret sharing schemes and reversibility of quantum operations, Phys. Rev. A, 72 (2005), 032318.  doi: 10.1103/PhysRevA.72.032318.  Google Scholar

[14]

A. Shamir, How to share a secret, Comm. ACM, 22 (1979), 612-613.  doi: 10.1145/359168.359176.  Google Scholar

[15]

A. D. Smith, Quantum secret sharing for general access structures, 2000, arXiv:quant-ph/0001087, Google Scholar

[16]

H. Stichtenoth, Algebraic Function Fields and Codes, vol. 254 of Graduate Texts in Mathematics, 2nd edition, Springer-Verlag, Berlin Heidelberg, 2009.  Google Scholar

[17] D. R. Stinson, Cryptography Theory and Practice, 3rd edition, Chapman & Hall/CRC, 2006.   Google Scholar
[18]

H. Yamamoto, Secret sharing system using (k; l; n) threshold scheme, Electronics and Communications in Japan (Part I: Communications), 69 (1986), 46-54, (the original Japanese version published in 1985) doi: 10.1002/ecja.4410690906.  Google Scholar

[19]

P. Zhang and R. Matsumoto, Quantum strongly secure ramp secret sharing, Quantum Information Processing, 14 (2015), 715-729.  doi: 10.1007/s11128-014-0863-2.  Google Scholar

show all references

References:
[1]

G. R. Blakley and C. Meadows, Security of ramp schemes, in Advances in Cryptology-CRYPTO'84, vol. 196 of Lecture Notes in Computer Science, Springer-Verlag, 1985, 242-269. doi: 10.1007/3-540-39568-7_20.  Google Scholar

[2]

A. Bogdanov, S. Guo and I. Komargodski, Threshold secret sharing requires a linear size alphabet, in Theory of Cryptography (eds. M. Hirt and A. Smith), Springer Berlin Heidelberg, Berlin, Heidelberg, 9986 (2016), 471-484. doi: 10.1007/978-3-662-53644-5_18.  Google Scholar

[3]

I. CascudoR. Cramer and C. Xing, Bounds on the threshold gap in secret sharing and its applications, IEEE Trans. Inform. Theory, 59 (2013), 5600-5612.  doi: 10.1109/TIT.2013.2264504.  Google Scholar

[4]

I. Cascudo, J. Skovsted Gundersen and D. Ruano, Improved bounds on the threashold gap in ramp secret sharing, 2018, Cryptology ePrint Archive 2018/099. Google Scholar

[5]

H. Chen and R. Cramer, Algebraic geometric secret sharing schemes and secure multi-party computations over small fields, in Advances in Cryptology - CRYPT 2006 (ed. C. Dwork), vol. 4117 of Lecture Notes in Computer Science, Springer-Verlag, 2006, 521-536. doi: 10.1007/11818175_31.  Google Scholar

[6]

H. Chen, R. Cramer, R. de Haan and I. Cascudo Pueyo, Strongly multiplicative ramp schemes from high degree rational points on curves, in Advances in Cryptology - EUROCRYPT 2008 (ed. N. Smart), vol. 4965 of Lecture Notes in Computer Science, Springer-Verlag, 2008, 451-470 doi: 10.1007/978-3-540-78967-3_26.  Google Scholar

[7]

R. CleveD. Gottesman and H.-K. Lo, How to share a quantum secret, Phys. Rev. Lett., 83 (1999), 648-651.  doi: 10.1103/PhysRevLett.83.648.  Google Scholar

[8]

D. Gottesman, Theory of quantum secret sharing, Phys. Rev. A, 61 (2000), 042311.  doi: 10.1103/PhysRevA.61.042311.  Google Scholar

[9]

M. Iwamoto and H. Yamamoto, Strongly secure ramp secret sharing schemes for general access structures, Inform. Process. Lett., 97 (2006), 52-57.  doi: 10.1016/j.ipl.2005.09.012.  Google Scholar

[10]

R. Matsumoto, Coding theoretic construction of quantum ramp secret sharing, IEICE Trans. Fundamentals, E101-A (2018), 1215-1222.  doi: 10.1587/transfun.E101.A.1215.  Google Scholar

[11]

R. Matsumoto, Strong security of the strongly multiplicative ramp secret sharing based on algebraic curves, IEICE Trans. Fundamentals, E98-A (2015), 1576-1578.  doi: 10.1587/transfun.E98.A.1576.  Google Scholar

[12]

R. J. McEliece and D. V. Sarwate, On sharing secrets and Reed-Solomon codes, Comm. ACM, 24 (1981), 583-584.  doi: 10.1145/358746.358762.  Google Scholar

[13]

T. OgawaA. SasakiM. Iwamoto and H Yamamoto, Quantum secret sharing schemes and reversibility of quantum operations, Phys. Rev. A, 72 (2005), 032318.  doi: 10.1103/PhysRevA.72.032318.  Google Scholar

[14]

A. Shamir, How to share a secret, Comm. ACM, 22 (1979), 612-613.  doi: 10.1145/359168.359176.  Google Scholar

[15]

A. D. Smith, Quantum secret sharing for general access structures, 2000, arXiv:quant-ph/0001087, Google Scholar

[16]

H. Stichtenoth, Algebraic Function Fields and Codes, vol. 254 of Graduate Texts in Mathematics, 2nd edition, Springer-Verlag, Berlin Heidelberg, 2009.  Google Scholar

[17] D. R. Stinson, Cryptography Theory and Practice, 3rd edition, Chapman & Hall/CRC, 2006.   Google Scholar
[18]

H. Yamamoto, Secret sharing system using (k; l; n) threshold scheme, Electronics and Communications in Japan (Part I: Communications), 69 (1986), 46-54, (the original Japanese version published in 1985) doi: 10.1002/ecja.4410690906.  Google Scholar

[19]

P. Zhang and R. Matsumoto, Quantum strongly secure ramp secret sharing, Quantum Information Processing, 14 (2015), 715-729.  doi: 10.1007/s11128-014-0863-2.  Google Scholar

[1]

Bagher Bagherpour, Shahrooz Janbaz, Ali Zaghian. Optimal information ratio of secret sharing schemes on Dutch windmill graphs. Advances in Mathematics of Communications, 2019, 13 (1) : 89-99. doi: 10.3934/amc.2019005

[2]

Stefka Bouyuklieva, Zlatko Varbanov. Some connections between self-dual codes, combinatorial designs and secret sharing schemes. Advances in Mathematics of Communications, 2011, 5 (2) : 191-198. doi: 10.3934/amc.2011.5.191

[3]

Adriana Navarro-Ramos, William Olvera-Lopez. A solution for discrete cost sharing problems with non rival consumption. Journal of Dynamics & Games, 2018, 5 (1) : 31-39. doi: 10.3934/jdg.2018004

[4]

Juliang Zhang, Jian Chen. Information sharing in a make-to-stock supply chain. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1169-1189. doi: 10.3934/jimo.2014.10.1169

[5]

Dan Mangoubi. A gradient estimate for harmonic functions sharing the same zeros. Electronic Research Announcements, 2014, 21: 62-71. doi: 10.3934/era.2014.21.62

[6]

Rafael Bravo De La Parra, Luis Sanz. A discrete model of competing species sharing a parasite. Discrete & Continuous Dynamical Systems - B, 2020, 25 (6) : 2121-2142. doi: 10.3934/dcdsb.2019204

[7]

Osman Palanci, Mustafa Ekici, Sirma Zeynep Alparslan Gök. On the equal surplus sharing interval solutions and an application. Journal of Dynamics & Games, 2021, 8 (2) : 139-150. doi: 10.3934/jdg.2020023

[8]

Sushil Kumar Dey, Bibhas C. Giri. Coordination of a sustainable reverse supply chain with revenue sharing contract. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020165

[9]

Jong Soo Kim, Won Chan Jeong. A model for buyer and supplier coordination and information sharing in order-up-to systems. Journal of Industrial & Management Optimization, 2012, 8 (4) : 987-1015. doi: 10.3934/jimo.2012.8.987

[10]

João Correia-da-Silva, Joana Pinho. The profit-sharing rule that maximizes sustainability of cartel agreements. Journal of Dynamics & Games, 2016, 3 (2) : 143-151. doi: 10.3934/jdg.2016007

[11]

I-Lin Wang, Chen-Tai Hou. A crowdsourced dynamic repositioning strategy for public bike sharing systems. Numerical Algebra, Control & Optimization, 2022, 12 (1) : 31-46. doi: 10.3934/naco.2021049

[12]

Alar Leibak. On the number of factorizations of $ t $ mod $ N $ and the probability distribution of Diffie-Hellman secret keys for many users. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021029

[13]

Shiyong Li, Wei Sun, Quan-Lin Li. Utility maximization for bandwidth allocation in peer-to-peer file-sharing networks. Journal of Industrial & Management Optimization, 2020, 16 (3) : 1099-1117. doi: 10.3934/jimo.2018194

[14]

Xue-Yan Wu, Zhi-Ping Fan, Bing-Bing Cao. Cost-sharing strategy for carbon emission reduction and sales effort: A nash game with government subsidy. Journal of Industrial & Management Optimization, 2020, 16 (4) : 1999-2027. doi: 10.3934/jimo.2019040

[15]

Daniele Bartoli, Alexander A. Davydov, Stefano Marcugini, Fernanda Pambianco. A 3-cycle construction of complete arcs sharing $(q+3)/2$ points with a conic. Advances in Mathematics of Communications, 2013, 7 (3) : 319-334. doi: 10.3934/amc.2013.7.319

[16]

Xiaomei Li, Renjing Liu, Zhongquan Hu, Jiamin Dong. Information sharing in two-tier supply chains considering cost reduction effort and information leakage. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021200

[17]

Guoqiang Shi, Yong Wang, Dejian Xia, Yanfei Zhao. Information sharing when competing manufacturers adopt asymmetric channel in an e-tailer. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021207

[18]

Constanza Riera, Matthew G. Parker, Pantelimon Stǎnicǎ. Quantum states associated to mixed graphs and their algebraic characterization. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021015

[19]

Rich Stankewitz, Toshiyuki Sugawa, Hiroki Sumi. Hereditarily non uniformly perfect sets. Discrete & Continuous Dynamical Systems - S, 2019, 12 (8) : 2391-2402. doi: 10.3934/dcdss.2019150

[20]

Maura B. Paterson, Douglas R. Stinson. Splitting authentication codes with perfect secrecy: New results, constructions and connections with algebraic manipulation detection codes. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021054

2020 Impact Factor: 0.935

Metrics

  • PDF downloads (375)
  • HTML views (461)
  • Cited by (1)

Other articles
by authors

[Back to Top]