-
Previous Article
Wave-shaped round functions and primitive groups
- AMC Home
- This Issue
-
Next Article
The secrecy capacity of the arbitrarily varying wiretap channel under list decoding
Connecting Legendre with Kummer and Edwards
1. | iCIS Lab, Department of Computer Science, University of Calgary, Canada |
2. | Applied Statistics Unit, Indian Statistical Institute, 203, B.T. Road, Kolkata, India |
Scalar multiplication on suitable Legendre form elliptic curves can be speeded up in two ways. One can perform the bulk of the computation either on the associated Kummer line or on an appropriate twisted Edwards form elliptic curve. This paper provides details of moving to and from between Legendre form elliptic curves and associated Kummer line and moving to and from between Legendre form elliptic curves and related twisted Edwards form elliptic curves. Further, concrete twisted Edwards form elliptic curves are identified which correspond to known Kummer lines at the 128-bit security level which provide very fast scalar multiplication on modern architectures supporting SIMD operations.
References:
[1] |
J. Barwise and P. Eklof,
Lefschetz's principle, Journal of Algebra, 13 (1969), 554-570.
doi: 10.1016/0021-8693(69)90117-3. |
[2] |
D. J. Bernstein,
Curve25519: New Diffie-Hellman speed records, Public Key Cryptography - PKC, 3958 (2006), 207-228.
doi: 10.1007/11745853_14. |
[3] |
D. J. Bernstein and T. Lange, Explicit-Formulas Database, 2007. Available from: http://www.hyperelliptic.org/EFD/index.html. |
[4] |
D. J. Bernstein and T. Lange,
Faster Addition and Doubling on Elliptic Curves, Advances in Cryptology - ASIACRYPT, 4833 (2007), 29-50.
doi: 10.1007/978-3-540-76900-2_3. |
[5] |
D. J. Bernstein, P. Birkner, M. Joye, T. Lange and C. Peters,
Twisted Edwards curves, Progress in Cryptology - AFRICACRYPT, 5023 (2008), 389-405.
doi: 10.1007/978-3-540-68164-9_26. |
[6] |
D. J. Bernstein, N. Duif, T. Lange, P. Schwabe and B.-Y. Yang,
High-speed high-security signatures, J. Cryptographic Engineering, 2 (2012), 77-89.
|
[7] |
E. Brier and M. Joye,
Fast point multiplication on elliptic curves through isogenies, Applied Algebra, Algebraic Algorithms and Error-Correcting Codes - AAECC, 2643 (2003), 43-50.
doi: 10.1007/3-540-44828-4_6. |
[8] |
M. P. L. Das and P. Sarkar,
Pairing computation on twisted Edwards form elliptic curves, Pairing-Based Cryptography - Pairing, 5209 (2008), 192-210.
doi: 10.1007/978-3-540-85538-5_14. |
[9] |
H. M. Edwards,
A normal form for elliptic curves, Bulletin of the American Mathematical Society, 44 (2007), 393-422.
doi: 10.1090/S0273-0979-07-01153-6. |
[10] |
G. Frey and H.-G. Rück,
The strong Lefschetz principle in algebraic geometry, Manuscripta Mathematica, 55 (1986), 385-401.
doi: 10.1007/BF01186653. |
[11] |
P. Gaudry,
Fast genus 2 arithmetic based on Theta functions, J. Mathematical Cryptology, 1 (2007), 243-265.
doi: 10.1515/JMC.2007.012. |
[12] |
P. Gaudry and D. Lubicz,
The arithmetic of characteristic 2 Kummer surfaces and of elliptic Kummer lines, Finite Fields and Their Applications, 15 (2009), 246-260.
doi: 10.1016/j.ffa.2008.12.006. |
[13] |
H. Hisil and C. Costello,
Jacobian coordinates on genus 2 curves, J. Cryptology, 30 (2017), 572-600.
doi: 10.1007/s00145-016-9227-7. |
[14] |
H. Hisil, K. K.-H. Wong, G. Carter and E. Dawson,
Twisted edwards curves revisited, Advances in Cryptology - ASIACRYPT, 5350 (2008), 326-343.
doi: 10.1007/978-3-540-89255-7_20. |
[15] | |
[16] |
S. Karati and P. Sarkar, 2007. Available from: https://github.com/skarati/Connecting-Legendre-with-Kummer-and-Edwards. |
[17] |
S. Karati and P. Sarkar,
Kummer for Genus One over Prime Order Fields, Advances in Cryptology - ASIACRYPT, 10625 (2017), 3-32.
|
[18] |
N. Koblitz,
Elliptic curve cryptosystems, Mathematics of Computation, 48 (1987), 203-209.
doi: 10.1090/S0025-5718-1987-0866109-5. |
[19] |
V. S. Miller,
Use of elliptic curves in cryptography, Advances in Cryptology - CRYPTO, 218 (1985), 417-426.
doi: 10.1007/3-540-39799-X_31. |
[20] |
P. L. Montgomery,
Speeding the Pollard and elliptic curve methods of factorization, Mathematics of Computation, 48 (1987), 243-264.
doi: 10.1090/S0025-5718-1987-0866113-7. |
[21] |
D. Mumford, Tata Lectures on Theta I, Progress in Mathematics 28. Birkh äuser, 1983.
doi: 10.1007/978-1-4899-2843-6. |
[22] |
K. Okeya, H. Kurumatani and K. Sakurai,
Elliptic curves with the Montgomery-form and their cryptographic applications, Public Key Cryptography - PKC, 1751 (2000), 238-257.
doi: 10.1007/978-3-540-46588-1_17. |
[23] |
K. Okeya and K. Sakurai,
Efficient elliptic curve cryptosystems from a scalar multiplication algorithm with recovery of the y-coordinate on a Montgomery-form elliptic curve, Cryptographic Hardware and Embedded Systems - CHES, 2162 (2001), 126-141.
doi: 10.1007/3-540-44709-1_12. |
[24] |
J. H. Silverman, The Arithmetic of Elliptic Curves, Springer, 2009.
doi: 10.1007/978-0-387-09494-6. |
show all references
References:
[1] |
J. Barwise and P. Eklof,
Lefschetz's principle, Journal of Algebra, 13 (1969), 554-570.
doi: 10.1016/0021-8693(69)90117-3. |
[2] |
D. J. Bernstein,
Curve25519: New Diffie-Hellman speed records, Public Key Cryptography - PKC, 3958 (2006), 207-228.
doi: 10.1007/11745853_14. |
[3] |
D. J. Bernstein and T. Lange, Explicit-Formulas Database, 2007. Available from: http://www.hyperelliptic.org/EFD/index.html. |
[4] |
D. J. Bernstein and T. Lange,
Faster Addition and Doubling on Elliptic Curves, Advances in Cryptology - ASIACRYPT, 4833 (2007), 29-50.
doi: 10.1007/978-3-540-76900-2_3. |
[5] |
D. J. Bernstein, P. Birkner, M. Joye, T. Lange and C. Peters,
Twisted Edwards curves, Progress in Cryptology - AFRICACRYPT, 5023 (2008), 389-405.
doi: 10.1007/978-3-540-68164-9_26. |
[6] |
D. J. Bernstein, N. Duif, T. Lange, P. Schwabe and B.-Y. Yang,
High-speed high-security signatures, J. Cryptographic Engineering, 2 (2012), 77-89.
|
[7] |
E. Brier and M. Joye,
Fast point multiplication on elliptic curves through isogenies, Applied Algebra, Algebraic Algorithms and Error-Correcting Codes - AAECC, 2643 (2003), 43-50.
doi: 10.1007/3-540-44828-4_6. |
[8] |
M. P. L. Das and P. Sarkar,
Pairing computation on twisted Edwards form elliptic curves, Pairing-Based Cryptography - Pairing, 5209 (2008), 192-210.
doi: 10.1007/978-3-540-85538-5_14. |
[9] |
H. M. Edwards,
A normal form for elliptic curves, Bulletin of the American Mathematical Society, 44 (2007), 393-422.
doi: 10.1090/S0273-0979-07-01153-6. |
[10] |
G. Frey and H.-G. Rück,
The strong Lefschetz principle in algebraic geometry, Manuscripta Mathematica, 55 (1986), 385-401.
doi: 10.1007/BF01186653. |
[11] |
P. Gaudry,
Fast genus 2 arithmetic based on Theta functions, J. Mathematical Cryptology, 1 (2007), 243-265.
doi: 10.1515/JMC.2007.012. |
[12] |
P. Gaudry and D. Lubicz,
The arithmetic of characteristic 2 Kummer surfaces and of elliptic Kummer lines, Finite Fields and Their Applications, 15 (2009), 246-260.
doi: 10.1016/j.ffa.2008.12.006. |
[13] |
H. Hisil and C. Costello,
Jacobian coordinates on genus 2 curves, J. Cryptology, 30 (2017), 572-600.
doi: 10.1007/s00145-016-9227-7. |
[14] |
H. Hisil, K. K.-H. Wong, G. Carter and E. Dawson,
Twisted edwards curves revisited, Advances in Cryptology - ASIACRYPT, 5350 (2008), 326-343.
doi: 10.1007/978-3-540-89255-7_20. |
[15] | |
[16] |
S. Karati and P. Sarkar, 2007. Available from: https://github.com/skarati/Connecting-Legendre-with-Kummer-and-Edwards. |
[17] |
S. Karati and P. Sarkar,
Kummer for Genus One over Prime Order Fields, Advances in Cryptology - ASIACRYPT, 10625 (2017), 3-32.
|
[18] |
N. Koblitz,
Elliptic curve cryptosystems, Mathematics of Computation, 48 (1987), 203-209.
doi: 10.1090/S0025-5718-1987-0866109-5. |
[19] |
V. S. Miller,
Use of elliptic curves in cryptography, Advances in Cryptology - CRYPTO, 218 (1985), 417-426.
doi: 10.1007/3-540-39799-X_31. |
[20] |
P. L. Montgomery,
Speeding the Pollard and elliptic curve methods of factorization, Mathematics of Computation, 48 (1987), 243-264.
doi: 10.1090/S0025-5718-1987-0866113-7. |
[21] |
D. Mumford, Tata Lectures on Theta I, Progress in Mathematics 28. Birkh äuser, 1983.
doi: 10.1007/978-1-4899-2843-6. |
[22] |
K. Okeya, H. Kurumatani and K. Sakurai,
Elliptic curves with the Montgomery-form and their cryptographic applications, Public Key Cryptography - PKC, 1751 (2000), 238-257.
doi: 10.1007/978-3-540-46588-1_17. |
[23] |
K. Okeya and K. Sakurai,
Efficient elliptic curve cryptosystems from a scalar multiplication algorithm with recovery of the y-coordinate on a Montgomery-form elliptic curve, Cryptographic Hardware and Embedded Systems - CHES, 2162 (2001), 126-141.
doi: 10.1007/3-540-44709-1_12. |
[24] |
J. H. Silverman, The Arithmetic of Elliptic Curves, Springer, 2009.
doi: 10.1007/978-0-387-09494-6. |
|
|
|
|
|
|
|
|
return |
return |
|
|
|
|
|
|
|
|
return |
return |
input: |
if ( |
|
|
output: |
|
set |
else |
for |
|
|
|
return |
return |
input: |
if ( |
|
|
output: |
|
set |
else |
for |
|
|
|
return |
return |
KL to Legendre | Legendre to KL |
|
|
|
|
|
|
|
return |
return |
KL to Legendre | Legendre to KL |
|
|
|
|
|
|
|
return |
return |
Kummer | Legendre | twisted Edwards | Legendre to twisted Edwards |
b.r. (Thm 4.4) | |||
b.r. (Thm 4.4) | |||
b.r. (Thm 4.4) | |||
b.r. (Thm 4.4) | |||
2-iso (Thm 4.5) | |||
2-iso (Thm 4.5) | |||
2-iso (Thm 4.5) |
Kummer | Legendre | twisted Edwards | Legendre to twisted Edwards |
b.r. (Thm 4.4) | |||
b.r. (Thm 4.4) | |||
b.r. (Thm 4.4) | |||
b.r. (Thm 4.4) | |||
2-iso (Thm 4.5) | |||
2-iso (Thm 4.5) | |||
2-iso (Thm 4.5) |
[1] |
Rong Dong, Dongsheng Li, Lihe Wang. Regularity of elliptic systems in divergence form with directional homogenization. Discrete and Continuous Dynamical Systems, 2018, 38 (1) : 75-90. doi: 10.3934/dcds.2018004 |
[2] |
Emmanuel Hebey, Jérôme Vétois. Multiple solutions for critical elliptic systems in potential form. Communications on Pure and Applied Analysis, 2008, 7 (3) : 715-741. doi: 10.3934/cpaa.2008.7.715 |
[3] |
M. Matzeu, Raffaella Servadei. A variational approach to a class of quasilinear elliptic equations not in divergence form. Discrete and Continuous Dynamical Systems - S, 2012, 5 (4) : 819-830. doi: 10.3934/dcdss.2012.5.819 |
[4] |
David Iglesias-Ponte, Juan Carlos Marrero, David Martín de Diego, Edith Padrón. Discrete dynamics in implicit form. Discrete and Continuous Dynamical Systems, 2013, 33 (3) : 1117-1135. doi: 10.3934/dcds.2013.33.1117 |
[5] |
Aram L. Karakhanyan. Lipschitz continuity of free boundary in the continuous casting problem with divergence form elliptic equation. Discrete and Continuous Dynamical Systems, 2016, 36 (1) : 261-277. doi: 10.3934/dcds.2016.36.261 |
[6] |
Andrea Bonfiglioli, Ermanno Lanconelli and Francesco Uguzzoni. Levi's parametrix for some sub-elliptic non-divergence form operators. Electronic Research Announcements, 2003, 9: 10-18. |
[7] |
Abbas Bahri. Recent results in contact form geometry. Discrete and Continuous Dynamical Systems, 2004, 10 (1&2) : 21-30. doi: 10.3934/dcds.2004.10.21 |
[8] |
Junichi Minagawa. On the uniqueness of Nash equilibrium in strategic-form games. Journal of Dynamics and Games, 2020, 7 (2) : 97-104. doi: 10.3934/jdg.2020006 |
[9] |
Vivi Rottschäfer. Multi-bump patterns by a normal form approach. Discrete and Continuous Dynamical Systems - B, 2001, 1 (3) : 363-386. doi: 10.3934/dcdsb.2001.1.363 |
[10] |
Tony Lyons. Geophysical internal equatorial waves of extreme form. Discrete and Continuous Dynamical Systems, 2019, 39 (8) : 4471-4486. doi: 10.3934/dcds.2019183 |
[11] |
Gary Lieberman. Nonlocal problems for quasilinear parabolic equations in divergence form. Conference Publications, 2003, 2003 (Special) : 563-570. doi: 10.3934/proc.2003.2003.563 |
[12] |
Todor Mitev, Georgi Popov. Gevrey normal form and effective stability of Lagrangian tori. Discrete and Continuous Dynamical Systems - S, 2010, 3 (4) : 643-666. doi: 10.3934/dcdss.2010.3.643 |
[13] |
Jędrzej Śniatycki, Oǧul Esen. De Donder form for second order gravity. Journal of Geometric Mechanics, 2020, 12 (1) : 85-106. doi: 10.3934/jgm.2020005 |
[14] |
Dario Bambusi, A. Carati, A. Ponno. The nonlinear Schrödinger equation as a resonant normal form. Discrete and Continuous Dynamical Systems - B, 2002, 2 (1) : 109-128. doi: 10.3934/dcdsb.2002.2.109 |
[15] |
Hyungjin Huh. A special form of solution to half-wave equations. Evolution Equations and Control Theory, 2021 doi: 10.3934/eect.2021056 |
[16] |
Koray Karabina, Berkant Ustaoglu. Invalid-curve attacks on (hyper)elliptic curve cryptosystems. Advances in Mathematics of Communications, 2010, 4 (3) : 307-321. doi: 10.3934/amc.2010.4.307 |
[17] |
Xiwang Cao, Hao Chen, Sihem Mesnager. Further results on semi-bent functions in polynomial form. Advances in Mathematics of Communications, 2016, 10 (4) : 725-741. doi: 10.3934/amc.2016037 |
[18] |
Amal Attouchi, Eero Ruosteenoja. Gradient regularity for a singular parabolic equation in non-divergence form. Discrete and Continuous Dynamical Systems, 2020, 40 (10) : 5955-5972. doi: 10.3934/dcds.2020254 |
[19] |
Sigve Hovda. Closed-form expression for the inverse of a class of tridiagonal matrices. Numerical Algebra, Control and Optimization, 2016, 6 (4) : 437-445. doi: 10.3934/naco.2016019 |
[20] |
Maria Rosaria Lancia, Valerio Regis Durante, Paola Vernole. Asymptotics for Venttsel' problems for operators in non divergence form in irregular domains. Discrete and Continuous Dynamical Systems - S, 2016, 9 (5) : 1493-1520. doi: 10.3934/dcdss.2016060 |
2021 Impact Factor: 1.015
Tools
Metrics
Other articles
by authors
[Back to Top]