# American Institute of Mathematical Sciences

February  2019, 13(1): 121-135. doi: 10.3934/amc.2019007

## Further improvement of factoring $N = p^r q^s$ with partial known bits

 1 College of Computer, National University of Defense Technology, Changsha 410073, China 2 School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore 3 State Key Laboratory of Cryptology, Beijing 100878, China 4 College of Liberal Arts and Sciences, National University of Defense Technology, Changsha 410073, China

* Corresponding author: Longjiang Qu

Received  May 2018 Revised  September 2018 Published  December 2018

We revisit the factoring with known bits problem on RSA moduli. In 1996, Coppersmith showed that the RSA modulus $N = pq$ with balanced $p,q$ can be efficiently factored, if the high order $\frac{1}{4} \log_2 N$ bits of one prime factor is given. Later, this important result is also generalized to the factorization of RSA variants moduli such as $N = p^r q$ or $N = p_1 p_2 ··· p_n$. In 2000, Lim et al. proposed a new RSA variant with the modulus of the form $N = p^r q^s$, which is much faster in the decryption process than the standard RSA. Then from 2015 to 2018, in order to investigate the security property of this RSA variant, Lu et al. and Coron et al. have presented three works studying the polynomial-time factorization of $N = p^r q^s$ with partial known bits of $p^u q^v$ (or one of the prime factors $p,q$) for different choices of $u, v$. In this paper, we present a new lattice construction used for Coppersmith's method, and thus improve previous results. Namely, our result requires fewer known bits to recover the prime factors $p,q$. We also generalize our result to the factorization of $N = p_1^{r_1}p_2^{r_2}··· p_n^{r_n}$.

Citation: Shixiong Wang, Longjiang Qu, Chao Li, Huaxiong Wang. Further improvement of factoring $N = p^r q^s$ with partial known bits. Advances in Mathematics of Communications, 2019, 13 (1) : 121-135. doi: 10.3934/amc.2019007
##### References:
 [1] D. Boneh, G. Durfee and N. Howgrave-Graham, Factoring $N = p^r q$ for large $r$, Advances in Cryptology-CRYPTO 1999, Springer Berlin Heidelberg, 1666 (1999), 326-337. doi: 10.1007/3-540-48405-1_21. [2] T. Collins, D. Hopkins, S. Langford and M. Sabin, Public key cryptographic apparatus and method, U.S. Patent, (1998), 5848159. [3] D. Coppersmith, Finding a small root of a univariate modular equation, Advances in Cryptology-EUROCRYPT 1996, Springer Berlin Heidelberg, 1070 (1996), 155-165. doi: 10.1007/3-540-68339-9_14. [4] D. Coppersmith, Finding a small root of a bivariate integer equation; factoring with high bits known, Advances in Cryptology-EUROCRYPT 1996, Springer Berlin Heidelberg, 1070 (1996), 178-189. doi: 10.1007/3-540-68339-9_16. [5] D. Coppersmith, Small solutions to polynomial equations, and low exponent RSA vulnerabilities, Journal of Cryptology, 10 (1997), 233-260.  doi: 10.1007/s001459900030. [6] J. S. Coron, J. C. Faugère, G. Renault and R. Zeitoun, Factoring $N = p^rq^s$ for large $r$ and $s$, Cryptographers' Track at the RSA Conference, Springer, Cham, 9610 (2016), 448-464. doi: 10.1007/978-3-319-29485-8_26. [7] J. S. Coron and R. Zeitoun, Improved factorization of $N = p^rq^s$, Cryptographers' Track at the RSA Conference, Springer, Cham, 2018, 65-79. [8] M. Herrmann and A. May, On factoring arbitrary integers with known bits, IACR Cryptology ePrint Archive, 2007, 374, https://eprint.iacr.org/2007/374. [9] M. J. Hinek, On the security of multi-prime RSA, Journal of Mathematical Cryptology, 2 (2008), 117-147.  doi: 10.1515/JMC.2008.006. [10] N. Howgrave-Graham, Finding small roots of univariate modular equations revisited, Crytography and Coding, Springer Berlin Heidelberg, 1335 (1997), 131-142. doi: 10.1007/BFb0024458. [11] N. Howgrave-Graham, Approximate integer common divisors, Cryptography and Lattices, Springer Berlin Heidelberg, 2146 (2001), 51-66. doi: 10.1007/3-540-44670-2_6. [12] A. K. Lenstra, H. W. Lenstra and L. Lovász, Factoring polynomials with rational coefficients, Mathematische Annalen, 261 (1982), 515-534.  doi: 10.1007/BF01457454. [13] S. Lim, S. Kim, I. Yie and H. Lee, A generalized Takagi-cryptosystem with a modulus of the form $p^r q^s$, Progress in Cryptology-INDOCRYPT 2000, Springer Berlin Heidelberg, 1977 (2000), 283-294. doi: 10.1007/3-540-44495-5_25. [14] Y. Lu, L. Peng and S. Sarkar, Cryptanalysis of an RSA variant with moduli $N = p^rq^l$, The 9th International Workshop on Coding and Cryptography 2015, WCC 2015. [15] A. May, New RSA Vulnerabilities Using Lattice Reduction Methods, Ph.D. thesis, University of Paderborn, 2003. [16] R. L. Rivest, A. Shamir and L. Adleman, A method for obtaining digital signatures and public-key cryptosystems, Communications of the ACM, 21 (1978), 120-126.  doi: 10.1145/359340.359342. [17] B. Santoso, N. Kunihiro, N. Kanayama and K. Ohta, Factorization of square-free integers with high bits known, Progress in Cryptology-VIETCRYPT 2006, Springer, Berlin, Heidelberg, 2006,115-130. [18] T. Takagi, Fast RSA-type cryptosystem modulo $p^k q$, Advances in Cryptology-CRYPTO 1998, Springer Berlin Heidelberg, 1998,318-326. [19] H. Zhang and T. Takagi, Attacks on multi-prime RSA with small prime difference, Australasian Conference on Information Security and Privacy, Springer, Berlin, Heidelberg, 2013, 41-56. [20] M. Zheng, N. Kunihiro and H. Hu, Improved factoring attacks on multi-prime RSA with small prime difference, Australasian Conference on Information Security and Privacy, Springer, Cham, 2017,324-342. [21] SageMath, the Sage Mathematics Software System, the Sage Developers, 2018, http://www.sagemath.org.

show all references

##### References:
 [1] D. Boneh, G. Durfee and N. Howgrave-Graham, Factoring $N = p^r q$ for large $r$, Advances in Cryptology-CRYPTO 1999, Springer Berlin Heidelberg, 1666 (1999), 326-337. doi: 10.1007/3-540-48405-1_21. [2] T. Collins, D. Hopkins, S. Langford and M. Sabin, Public key cryptographic apparatus and method, U.S. Patent, (1998), 5848159. [3] D. Coppersmith, Finding a small root of a univariate modular equation, Advances in Cryptology-EUROCRYPT 1996, Springer Berlin Heidelberg, 1070 (1996), 155-165. doi: 10.1007/3-540-68339-9_14. [4] D. Coppersmith, Finding a small root of a bivariate integer equation; factoring with high bits known, Advances in Cryptology-EUROCRYPT 1996, Springer Berlin Heidelberg, 1070 (1996), 178-189. doi: 10.1007/3-540-68339-9_16. [5] D. Coppersmith, Small solutions to polynomial equations, and low exponent RSA vulnerabilities, Journal of Cryptology, 10 (1997), 233-260.  doi: 10.1007/s001459900030. [6] J. S. Coron, J. C. Faugère, G. Renault and R. Zeitoun, Factoring $N = p^rq^s$ for large $r$ and $s$, Cryptographers' Track at the RSA Conference, Springer, Cham, 9610 (2016), 448-464. doi: 10.1007/978-3-319-29485-8_26. [7] J. S. Coron and R. Zeitoun, Improved factorization of $N = p^rq^s$, Cryptographers' Track at the RSA Conference, Springer, Cham, 2018, 65-79. [8] M. Herrmann and A. May, On factoring arbitrary integers with known bits, IACR Cryptology ePrint Archive, 2007, 374, https://eprint.iacr.org/2007/374. [9] M. J. Hinek, On the security of multi-prime RSA, Journal of Mathematical Cryptology, 2 (2008), 117-147.  doi: 10.1515/JMC.2008.006. [10] N. Howgrave-Graham, Finding small roots of univariate modular equations revisited, Crytography and Coding, Springer Berlin Heidelberg, 1335 (1997), 131-142. doi: 10.1007/BFb0024458. [11] N. Howgrave-Graham, Approximate integer common divisors, Cryptography and Lattices, Springer Berlin Heidelberg, 2146 (2001), 51-66. doi: 10.1007/3-540-44670-2_6. [12] A. K. Lenstra, H. W. Lenstra and L. Lovász, Factoring polynomials with rational coefficients, Mathematische Annalen, 261 (1982), 515-534.  doi: 10.1007/BF01457454. [13] S. Lim, S. Kim, I. Yie and H. Lee, A generalized Takagi-cryptosystem with a modulus of the form $p^r q^s$, Progress in Cryptology-INDOCRYPT 2000, Springer Berlin Heidelberg, 1977 (2000), 283-294. doi: 10.1007/3-540-44495-5_25. [14] Y. Lu, L. Peng and S. Sarkar, Cryptanalysis of an RSA variant with moduli $N = p^rq^l$, The 9th International Workshop on Coding and Cryptography 2015, WCC 2015. [15] A. May, New RSA Vulnerabilities Using Lattice Reduction Methods, Ph.D. thesis, University of Paderborn, 2003. [16] R. L. Rivest, A. Shamir and L. Adleman, A method for obtaining digital signatures and public-key cryptosystems, Communications of the ACM, 21 (1978), 120-126.  doi: 10.1145/359340.359342. [17] B. Santoso, N. Kunihiro, N. Kanayama and K. Ohta, Factorization of square-free integers with high bits known, Progress in Cryptology-VIETCRYPT 2006, Springer, Berlin, Heidelberg, 2006,115-130. [18] T. Takagi, Fast RSA-type cryptosystem modulo $p^k q$, Advances in Cryptology-CRYPTO 1998, Springer Berlin Heidelberg, 1998,318-326. [19] H. Zhang and T. Takagi, Attacks on multi-prime RSA with small prime difference, Australasian Conference on Information Security and Privacy, Springer, Berlin, Heidelberg, 2013, 41-56. [20] M. Zheng, N. Kunihiro and H. Hu, Improved factoring attacks on multi-prime RSA with small prime difference, Australasian Conference on Information Security and Privacy, Springer, Cham, 2017,324-342. [21] SageMath, the Sage Mathematics Software System, the Sage Developers, 2018, http://www.sagemath.org.
Comparison between the Result in [7] and Our Result when $\log_2 p \approx \log_2 q$
 $\log_2 N$ $r, s$ the Choice of $u, v$ the Result in [7] Our Result $5000$ $5, 4$ $4, 3$ $\zeta > 108.0$ $\zeta > 61.73$ $5000$ $7, 3$ $5, 2$ $\zeta > 70.00$ $\zeta > 50.00$ $2000$ $3, 2$ $2, 1$ $\zeta > 120.0$ $\zeta > 80.00$ $2000$ $7, 5$ $3, 2$ $\zeta > 23.15$ $\zeta > 13.89$ $10000$ $7, 5$ $3, 2$ $\zeta > 115.7$ $\zeta > 69.44$ $10000$ $13, 12$ $12, 11$ $\zeta > 30.67$ $\zeta > 16.00$
 $\log_2 N$ $r, s$ the Choice of $u, v$ the Result in [7] Our Result $5000$ $5, 4$ $4, 3$ $\zeta > 108.0$ $\zeta > 61.73$ $5000$ $7, 3$ $5, 2$ $\zeta > 70.00$ $\zeta > 50.00$ $2000$ $3, 2$ $2, 1$ $\zeta > 120.0$ $\zeta > 80.00$ $2000$ $7, 5$ $3, 2$ $\zeta > 23.15$ $\zeta > 13.89$ $10000$ $7, 5$ $3, 2$ $\zeta > 115.7$ $\zeta > 69.44$ $10000$ $13, 12$ $12, 11$ $\zeta > 30.67$ $\zeta > 16.00$
Experimental Examples for the Method in [7] and Our Method when $\log_2 p \approx \log_2 q$
 $\log_2 N$$(r,s),\ (u,v) Methods Bits Required At Least m,t_1,t_2 \dim(\Lambda) Time (LLL Algorithm) 2000 [7] 222 bits 10,9,9 11 0.189 seconds (3,2),\ (2,1) Ours 196 bits 10,9,10 11 0.170 seconds 2000 [7] 179 bits 20,18,18 21 15.98 seconds (3,2),\ (2,1) Ours 141 bits 20,18,20 21 8.517 seconds 2000 [7] 162 bits 30,27,27 31 264.6 seconds (3,2),\ (2,1) Ours 118 bits 30,27,30 31 94.78 seconds 1000 [7] 33 bits 36,35,35 37 36.82 seconds (7,5),\ (3,2) Ours 30 bits 36,35,36 37 31.85 seconds 2000 [7] 132 bits 16,15,15 17 0.906 seconds (5,3),\ (2,1) Ours 120 bits 16,15,16 17 0.557 seconds 3000 [7] 191 bits 21,20,20 22 35.49 seconds (4,3),\ (3,2) Ours 161 bits 21,20,21 22 21.91 seconds  \log_2 N$$(r,s),\ (u,v)$ Methods Bits Required At Least $m,t_1,t_2$ $\dim(\Lambda)$ Time (LLL Algorithm) $2000$ [7] $222$ bits $10,9,9$ $11$ $0.189$ seconds $(3,2),\ (2,1)$ Ours $196$ bits $10,9,10$ $11$ $0.170$ seconds $2000$ [7] $179$ bits $20,18,18$ $21$ $15.98$ seconds $(3,2),\ (2,1)$ Ours $141$ bits $20,18,20$ $21$ $8.517$ seconds $2000$ [7] $162$ bits $30,27,27$ $31$ $264.6$ seconds $(3,2),\ (2,1)$ Ours $118$ bits $30,27,30$ $31$ $94.78$ seconds $1000$ [7] $33$ bits $36,35,35$ $37$ $36.82$ seconds $(7,5),\ (3,2)$ Ours $30$ bits $36,35,36$ $37$ $31.85$ seconds $2000$ [7] $132$ bits $16,15,15$ $17$ $0.906$ seconds $(5,3),\ (2,1)$ Ours $120$ bits $16,15,16$ $17$ $0.557$ seconds $3000$ [7] $191$ bits $21,20,20$ $22$ $35.49$ seconds $(4,3),\ (3,2)$ Ours $161$ bits $21,20,21$ $22$ $21.91$ seconds
 [1] Henry Cohn, Nadia Heninger. Ideal forms of Coppersmith's theorem and Guruswami-Sudan list decoding. Advances in Mathematics of Communications, 2015, 9 (3) : 311-339. doi: 10.3934/amc.2015.9.311 [2] Valery Y. Glizer, Oleg Kelis. Asymptotic properties of an infinite horizon partial cheap control problem for linear systems with known disturbances. Numerical Algebra, Control and Optimization, 2018, 8 (2) : 211-235. doi: 10.3934/naco.2018013 [3] Lingchen Kong, Naihua Xiu, Guokai Liu. Partial $S$-goodness for partially sparse signal recovery. Numerical Algebra, Control and Optimization, 2014, 4 (1) : 25-38. doi: 10.3934/naco.2014.4.25 [4] Alessandro Ferriero. A direct proof of the Tonelli's partial regularity result. Discrete and Continuous Dynamical Systems, 2012, 32 (6) : 2089-2099. doi: 10.3934/dcds.2012.32.2089 [5] Michele Barbi, Angelo Di Garbo, Rita Balocchi. Improved integrate-and-fire model for RSA. Mathematical Biosciences & Engineering, 2007, 4 (4) : 609-615. doi: 10.3934/mbe.2007.4.609 [6] Christoforidou Amalia, Christian-Oliver Ewald. A lattice method for option evaluation with regime-switching asset correlation structure. Journal of Industrial and Management Optimization, 2021, 17 (4) : 1729-1752. doi: 10.3934/jimo.2020042 [7] Ying Zhang, Ling Ma, Zheng-Hai Huang. On phaseless compressed sensing with partially known support. Journal of Industrial and Management Optimization, 2020, 16 (3) : 1519-1526. doi: 10.3934/jimo.2019014 [8] Chunming Tang, Jinbao Jian, Guoyin Li. A proximal-projection partial bundle method for convex constrained minimax problems. Journal of Industrial and Management Optimization, 2019, 15 (2) : 757-774. doi: 10.3934/jimo.2018069 [9] Roberto Camassa, Pao-Hsiung Chiu, Long Lee, W.-H. Sheu. A particle method and numerical study of a quasilinear partial differential equation. Communications on Pure and Applied Analysis, 2011, 10 (5) : 1503-1515. doi: 10.3934/cpaa.2011.10.1503 [10] Xin Yu, Guojie Zheng, Chao Xu. The $C$-regularized semigroup method for partial differential equations with delays. Discrete and Continuous Dynamical Systems, 2016, 36 (9) : 5163-5181. doi: 10.3934/dcds.2016024 [11] Ali Hamidoǧlu. On general form of the Tanh method and its application to nonlinear partial differential equations. Numerical Algebra, Control and Optimization, 2016, 6 (2) : 175-181. doi: 10.3934/naco.2016007 [12] Figen Özpinar, Fethi Bin Muhammad Belgacem. The discrete homotopy perturbation Sumudu transform method for solving partial difference equations. Discrete and Continuous Dynamical Systems - S, 2019, 12 (3) : 615-624. doi: 10.3934/dcdss.2019039 [13] Matthias Eller. A remark on Littman's method of boundary controllability. Evolution Equations and Control Theory, 2013, 2 (4) : 621-630. doi: 10.3934/eect.2013.2.621 [14] Christopher M. Kellett. Classical converse theorems in Lyapunov's second method. Discrete and Continuous Dynamical Systems - B, 2015, 20 (8) : 2333-2360. doi: 10.3934/dcdsb.2015.20.2333 [15] Lars Grüne, Peter E. Kloeden, Stefan Siegmund, Fabian R. Wirth. Lyapunov's second method for nonautonomous differential equations. Discrete and Continuous Dynamical Systems, 2007, 18 (2&3) : 375-403. doi: 10.3934/dcds.2007.18.375 [16] Darya V. Verveyko, Andrey Yu. Verisokin. Application of He's method to the modified Rayleigh equation. Conference Publications, 2011, 2011 (Special) : 1423-1431. doi: 10.3934/proc.2011.2011.1423 [17] Christopher Bose, Rua Murray. The exact rate of approximation in Ulam's method. Discrete and Continuous Dynamical Systems, 2001, 7 (1) : 219-235. doi: 10.3934/dcds.2001.7.219 [18] Bernd Hofmann, Barbara Kaltenbacher, Elena Resmerita. Lavrentiev's regularization method in Hilbert spaces revisited. Inverse Problems and Imaging, 2016, 10 (3) : 741-764. doi: 10.3934/ipi.2016019 [19] Mikhail Dokuchaev, Guanglu Zhou, Song Wang. A modification of Galerkin's method for option pricing. Journal of Industrial and Management Optimization, 2022, 18 (4) : 2483-2504. doi: 10.3934/jimo.2021077 [20] Pavel Eichler, Radek Fučík, Robert Straka. Computational study of immersed boundary - lattice Boltzmann method for fluid-structure interaction. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 819-833. doi: 10.3934/dcdss.2020349

2021 Impact Factor: 1.015