In this paper, some general properties of the Zeng-Cai-Tang-Yang cyclotomy are studied. As its applications, two constructions of frequency-hopping sequences (FHSs) and two constructions of FHS sets are presented, where the length of sequences can be any odd integer larger than 3. The FHSs and FHS sets generated by our construction are (near-) optimal with respect to the Lempel–Greenberger bound and Peng–Fan bound, respectively. By choosing appropriate indexes and index sets, a lot of (near-) optimal FHSs and FHS sets can be obtained by our construction. Furthermore, some of them have new parameters which are not covered in the literature.
Citation: |
[1] |
T. M. Apostol, Introduction to Analytic Number Theory, New York, NY, USA: Springer-Verlag, 1976.
![]() ![]() |
[2] |
H. Cai, X. Zeng, T. Helleseth, X. Tang and Y. Yang, A new construction of zero-difference balanced functions and its applications, IEEE Trans. Inf. Theory, 59 (2013), 5008-5015.
doi: 10.1109/TIT.2013.2255114.![]() ![]() ![]() |
[3] |
B. Chen, L. Lin, S. Ling and H. Liu, Three new classes of optimal frequency-hopping sequence sets, Des., Codes and Cryptogr., 83 (2017), 219-232.
doi: 10.1007/s10623-016-0220-9.![]() ![]() ![]() |
[4] |
W. Chu and C. Colbourn, Optimal frequency-hopping sequences via cyclotomy, IEEE Trans. Inf. Theory, 51 (2005), 1139-1141.
doi: 10.1109/TIT.2004.842708.![]() ![]() ![]() |
[5] |
J. Chung, Y. Han and K. Yang, New classes of optimal frequency-hopping sequences by interleaving techniques, IEEE Trans. Inf. Theory, 55 (2009), 5783-5791.
doi: 10.1109/TIT.2009.2032742.![]() ![]() ![]() |
[6] |
J. Chung and K. Yang, Optimal frequency-hopping sequences with new parameters, IEEE Trans. Inf. Theory, 56 (2010), 1685-1693.
doi: 10.1109/TIT.2010.2040888.![]() ![]() ![]() |
[7] |
J. Chung and K. Yang, $k$-fold cyclotomy and its application to frequency-hopping sequences, IEEE Trans. Inf. Theory, 57 (2011), 2306-2317.
doi: 10.1109/TIT.2011.2112235.![]() ![]() ![]() |
[8] |
J. Chung and K. Yang, New frequency-hopping sequence sets with optimal average and good maximum Hamming correlations, IET Commun., 6 (2012), 2048-2053.
![]() |
[9] |
C. Ding, Y. Yang and X. Tang, Optimal sets of frequency hopping sequences from linear cyclic codes, IEEE Trans. Inf. Theory, 56 (2010), 3605-3612.
doi: 10.1109/TIT.2010.2048504.![]() ![]() ![]() |
[10] |
C. Ding, D. Y. Pei and A. Salomaa, Chinese Remainder Theorem: Applications in Computing, Coding, Cryptography, Singapore: World Scientific, 1996.
doi: 10.1142/9789812779380.![]() ![]() ![]() |
[11] |
C. Ding and T. Helleseth, New generalized cyclotomy and its applications, Finite Fields Appl., 4 (1998), 140-166.
doi: 10.1006/ffta.1998.0207.![]() ![]() ![]() |
[12] |
C. Ding, M. Miosio and J. Yuan, Algebraic constructions of optimal frequency hopping sequences, IEEE Trans. Inf. Theory, 53 (2007), 2606-2610.
doi: 10.1109/TIT.2007.899545.![]() ![]() ![]() |
[13] |
C. Ding and J. Yin, Sets of optimal frequency hopping sequences, IEEE Trans. Inf. Theory, 54 (2008), 3741-3745.
doi: 10.1109/TIT.2008.926410.![]() ![]() ![]() |
[14] |
C. Ding, R. Fuji-Hara, Y. Fujiwara, M. Jimbo and M. Mishima, Sets of frequency hopping sequences: Bounds and optimal constructions, IEEE Trans. Inf. Theory, 55 (2009), 3297-3304.
doi: 10.1109/TIT.2009.2021366.![]() ![]() ![]() |
[15] |
R. Fuji-Hara, Y. Miao and M. Mishima, Optimal frequency hopping sequences: A combinatorial approach, IEEE Trans. Inf. Theory, 50 (2004), 2408-2420.
doi: 10.1109/TIT.2004.834783.![]() ![]() ![]() |
[16] |
G. Ge, R. Fuji-Hara and Y. Miao, Further combinatorial constructions for optimal frequency-hopping sequences, J. Combinat. Theory A, 113 (2006), 1699-1718.
doi: 10.1016/j.jcta.2006.03.019.![]() ![]() ![]() |
[17] |
G. Ge, Y. Miao and Z. Yao, Optimal frequency hopping sequences: Auto- and cross-correlation properties, IEEE Trans. Inf. Theory, 55 (2009), 867-879.
doi: 10.1109/TIT.2008.2009856.![]() ![]() ![]() |
[18] |
Y. Han and K. Yang, On the Sidel'nikov sequences as frequency-hopping sequences, IEEE Trans. Inf. Theory, 55 (2009), 4279-4285.
doi: 10.1109/TIT.2009.2025569.![]() ![]() ![]() |
[19] |
P. Kumar, Frequency-hopping code sequence designs having large linear span, IEEE Trans. Inf. Theory, 34 (1988), 146-151.
doi: 10.1109/18.2616.![]() ![]() ![]() |
[20] |
A. Lempel and H. Greenberger, Families of sequences with optimal Hamming correlation properties, IEEE Trans. Inf. Theory, 20 (1974), 90-94.
doi: 10.1109/tit.1974.1055169.![]() ![]() ![]() |
[21] |
D. Peng and P. Fan, Lower bounds on the Hamming auto-and cross-correlations of frequency-hopping sequences, IEEE Trans. Inf. Theory, 50 (2004), 2149-2154.
doi: 10.1109/TIT.2004.833362.![]() ![]() ![]() |
[22] |
W. Ren, F. Fu and Z. Zhou, New sets of frequency-hopping sequences with optimal Hamming correlation, Des. Codes Cryptogr., 72 (2014), 423-434.
doi: 10.1007/s10623-012-9774-3.![]() ![]() ![]() |
[23] |
S. Xu, X. Cao and G. Xu, Recursive construction of optimal frequency-hopping sequences sets, IET Commun., 10 (2016), 1080-1086.
![]() |
[24] |
S. Xu, X. Cao and G. Xu, Optimal frequency-hopping sequence sets based on cyclotomy, Int. J. Found. Comput. S., 27 (2016), 443-462.
doi: 10.1142/S012905411650009X.![]() ![]() ![]() |
[25] |
Y. Yang, X. Tang, U. Parampalli and D. Peng, New bound on frequency hopping sequence sets and its optimal constructions, IEEE Trans. Inf. Theory, 57 (2011), 7605-7613.
doi: 10.1109/TIT.2011.2162571.![]() ![]() ![]() |
[26] |
X. Zeng, H. Cai, X. Tang and Y. Yang, A class of optimal frequency hopping sequences with new parameters, IEEE Trans. Inf. Theory, 58 (2012), 4899-4907.
doi: 10.1109/TIT.2012.2195771.![]() ![]() ![]() |
[27] |
X. Zeng, H. Cai, X. Tang and Y. Yang, Optimal frequency hopping sequences of odd length, IEEE Trans. Inf. Theory, 59 (2013), 3237-3248.
doi: 10.1109/TIT.2013.2237754.![]() ![]() ![]() |
[28] |
Z. Zhou, X. Tang, D. Peng and U. Parampalli, New constructions for optimal sets of frequency-hopping sequences, IEEE Trans. Inf. Theory, 57 (2011), 3831-3840.
doi: 10.1109/TIT.2011.2137290.![]() ![]() ![]() |