-
Previous Article
Two classes of differentially 4-uniform permutations over $ \mathbb{F}_{2^{n}} $ with $ n $ even
- AMC Home
- This Issue
-
Next Article
A complete classification of partial MDS (maximally recoverable) codes with one global parity
New doubly even self-dual codes having minimum weight 20
Research Center for Pure and Applied Mathematics, Graduate School of Information Sciences, Tohoku University, Sendai 980-8579, Japan |
In this note, we construct new doubly even self-dual codes having minimum weight 20 for lengths 112,120 and 128. This implies that there are at least three inequivalent extremal doubly even self-dual codes of length 112.
References:
[1] |
W. Bosma, J. Cannon and C. Playoust,
The Magma algebra system Ⅰ: The user language, J. Symbolic Comput., 24 (1997), 235-265.
doi: 10.1006/jsco.1996.0125. |
[2] |
R. A. Brualdi and V. S. Pless,
Weight enumerators of self-dual codes, IEEE Trans. Inform. Theory, 37 (1991), 1222-1225.
doi: 10.1109/18.86979. |
[3] |
J. H. Conway and N. J. A. Sloane,
A new upper bound on the minimal distance of self-dual codes, IEEE Trans. Inform. Theory, 36 (1990), 1319-1333.
doi: 10.1109/18.59931. |
[4] |
P. Gaborit, Table of Type Ⅱ Codes, Online available at http://www.unilim.fr/pages_perso/philippe.gaborit/SD/GF2/GF2II.htm, Accessed on October 6, 2017. |
[5] |
P. Gaborit, C.-S. Nedeloaia and A. Wassermann,
On the weight enumerators of duadic and quadratic residue codes, IEEE Trans. Inform. Theory, 51 (2005), 402-407.
doi: 10.1109/TIT.2004.839522. |
[6] |
A. M. Gleason, Weight polynomials of self-dual codes and the MacWilliams identities, Actes du Congrés International des Mathématiciens (Nice, 1970), Tome 3, Gauthier-Villars, Paris, (1971), 211-215. |
[7] |
M. Harada, An extremal doubly even self-dual code of length 112, Electron. J. Combin., 15 (2008), Note 33, 5 pp. |
[8] |
M. Harada, W. Holzmann, H. Kharaghani and M. Khorvash,
Extremal ternary self-dual codes constructed from negacirculant matrices, Graphs Combin., 23 (2007), 401-417.
doi: 10.1007/s00373-007-0731-2. |
[9] |
C. L. Mallows and N. J. A. Sloane,
An upper bound for self-dual codes, Inform. Control, 22 (1973), 188-200.
doi: 10.1016/S0019-9958(73)90273-8. |
[10] |
E. M. Rains and N. J. A. Sloane, Self-dual codes, Handbook of Coding Theory, V. S. Pless and W. C. Huffman (Editors), Elsevier, Amsterdam, (1998), 177-294. |
[11] |
R. Yorgova and A. Wassermann,
Binary self-dual codes with automorphisms of order 23, Des. Codes Cryptogr., 48 (2008), 155-164.
doi: 10.1007/s10623-007-9152-8. |
show all references
References:
[1] |
W. Bosma, J. Cannon and C. Playoust,
The Magma algebra system Ⅰ: The user language, J. Symbolic Comput., 24 (1997), 235-265.
doi: 10.1006/jsco.1996.0125. |
[2] |
R. A. Brualdi and V. S. Pless,
Weight enumerators of self-dual codes, IEEE Trans. Inform. Theory, 37 (1991), 1222-1225.
doi: 10.1109/18.86979. |
[3] |
J. H. Conway and N. J. A. Sloane,
A new upper bound on the minimal distance of self-dual codes, IEEE Trans. Inform. Theory, 36 (1990), 1319-1333.
doi: 10.1109/18.59931. |
[4] |
P. Gaborit, Table of Type Ⅱ Codes, Online available at http://www.unilim.fr/pages_perso/philippe.gaborit/SD/GF2/GF2II.htm, Accessed on October 6, 2017. |
[5] |
P. Gaborit, C.-S. Nedeloaia and A. Wassermann,
On the weight enumerators of duadic and quadratic residue codes, IEEE Trans. Inform. Theory, 51 (2005), 402-407.
doi: 10.1109/TIT.2004.839522. |
[6] |
A. M. Gleason, Weight polynomials of self-dual codes and the MacWilliams identities, Actes du Congrés International des Mathématiciens (Nice, 1970), Tome 3, Gauthier-Villars, Paris, (1971), 211-215. |
[7] |
M. Harada, An extremal doubly even self-dual code of length 112, Electron. J. Combin., 15 (2008), Note 33, 5 pp. |
[8] |
M. Harada, W. Holzmann, H. Kharaghani and M. Khorvash,
Extremal ternary self-dual codes constructed from negacirculant matrices, Graphs Combin., 23 (2007), 401-417.
doi: 10.1007/s00373-007-0731-2. |
[9] |
C. L. Mallows and N. J. A. Sloane,
An upper bound for self-dual codes, Inform. Control, 22 (1973), 188-200.
doi: 10.1016/S0019-9958(73)90273-8. |
[10] |
E. M. Rains and N. J. A. Sloane, Self-dual codes, Handbook of Coding Theory, V. S. Pless and W. C. Huffman (Editors), Elsevier, Amsterdam, (1998), 177-294. |
[11] |
R. Yorgova and A. Wassermann,
Binary self-dual codes with automorphisms of order 23, Des. Codes Cryptogr., 48 (2008), 155-164.
doi: 10.1007/s10623-007-9152-8. |
1 | 31676520067584 | ||
8512 | 109690203298312 | ||
186060 | 325630986391040 | ||
3239936 | 831288282918576 | ||
47551798 | 1829637194737408 | ||
561437184 | 3479230392288469 | ||
5424089452 | 5725819388994432 | ||
43459872064 | 8165553897114152 | ||
291008417322 | 10099951175046656 | ||
1639219687168 | 10841051388476292 | ||
7813559379696 |
1 | 31676520067584 | ||
8512 | 109690203298312 | ||
186060 | 325630986391040 | ||
3239936 | 831288282918576 | ||
47551798 | 1829637194737408 | ||
561437184 | 3479230392288469 | ||
5424089452 | 5725819388994432 | ||
43459872064 | 8165553897114152 | ||
291008417322 | 10099951175046656 | ||
1639219687168 | 10841051388476292 | ||
7813559379696 |
10613, 10649, 10661, 10703, 10709, 10715, 10721, 10727, 10733, 10739, 10745, |
10769, 10775, 10781, 10787, 10799, 10805, 10811, 10823, 10829, 10835, 10841, |
10847, 10853, 10859, 10865, 10871, 10883, 10895, 10901, 10907, 10913, 10919, |
10925, 10931, 10937, 10943, 10949, 10967, 10973, 10985, 10991, 10997, 11009, |
11021, 11033, 11045, 11057, 11063, 11069, 11093, 11099, 11117, 63525 |
10618, 10663, 10672, 10702, 10708, 10717, 10735, 10750, 10765, 10768, 10771, |
10777, 10783, 10786, 10789, 10801, 10810, 10819, 10831, 10834, 10837, 10840, |
10843, 10846, 10849, 10852, 10858, 10861, 10864, 10867, 10873, 10882, 10885, |
10900, 10903, 10906, 10909, 10912, 10918, 10921, 10924, 10927, 10930, 10936, |
10945, 10954, 10957, 10978, 10984, 10987, 11002, 11011, 11023, 11041, 11044, |
11056, 11065, 11080, 11086, 11098, 11110, 63525 |
10581, 10620, 10641, 10653, 10659, 10668, 10674, 10689, 10698, 10701, 10704, |
10707, 10719, 10728, 10734, 10749, 10758, 10761, 10764, 10770, 10776, 10779, |
10782, 10785, 10791, 10794, 10797, 10806, 10809, 10812, 10815, 10818, 10821, |
10824, 10827, 10830, 10833, 10842, 10848, 10851, 10854, 10860, 10863, 10866, |
10872, 10875, 10878, 10881, 10884, 10890, 10893, 10896, 10899, 10902, 10905, |
10911, 10914, 10917, 10923, 10926, 10929, 10932, 10935, 10938, 10941, 10950, |
10953, 10959, 10965, 10968, 10971, 10977, 10980, 10989, 10992, 10995, 11001, |
11013, 11016, 11025, 11028, 11040, 11046, 11049, 11052, 11055, 11073, 11085, |
11103, 11151, 63525 |
10613, 10649, 10661, 10703, 10709, 10715, 10721, 10727, 10733, 10739, 10745, |
10769, 10775, 10781, 10787, 10799, 10805, 10811, 10823, 10829, 10835, 10841, |
10847, 10853, 10859, 10865, 10871, 10883, 10895, 10901, 10907, 10913, 10919, |
10925, 10931, 10937, 10943, 10949, 10967, 10973, 10985, 10991, 10997, 11009, |
11021, 11033, 11045, 11057, 11063, 11069, 11093, 11099, 11117, 63525 |
10618, 10663, 10672, 10702, 10708, 10717, 10735, 10750, 10765, 10768, 10771, |
10777, 10783, 10786, 10789, 10801, 10810, 10819, 10831, 10834, 10837, 10840, |
10843, 10846, 10849, 10852, 10858, 10861, 10864, 10867, 10873, 10882, 10885, |
10900, 10903, 10906, 10909, 10912, 10918, 10921, 10924, 10927, 10930, 10936, |
10945, 10954, 10957, 10978, 10984, 10987, 11002, 11011, 11023, 11041, 11044, |
11056, 11065, 11080, 11086, 11098, 11110, 63525 |
10581, 10620, 10641, 10653, 10659, 10668, 10674, 10689, 10698, 10701, 10704, |
10707, 10719, 10728, 10734, 10749, 10758, 10761, 10764, 10770, 10776, 10779, |
10782, 10785, 10791, 10794, 10797, 10806, 10809, 10812, 10815, 10818, 10821, |
10824, 10827, 10830, 10833, 10842, 10848, 10851, 10854, 10860, 10863, 10866, |
10872, 10875, 10878, 10881, 10884, 10890, 10893, 10896, 10899, 10902, 10905, |
10911, 10914, 10917, 10923, 10926, 10929, 10932, 10935, 10938, 10941, 10950, |
10953, 10959, 10965, 10968, 10971, 10977, 10980, 10989, 10992, 10995, 11001, |
11013, 11016, 11025, 11028, 11040, 11046, 11049, 11052, 11055, 11073, 11085, |
11103, 11151, 63525 |
Numbers of codewords of weight 20 |
93180, 93936, 94512, 95136, 95202, 95376, 95496, 95532, 95826, 95946, 95952, 96012, 96096, 96126, |
96156, 96216, 96240, 96312, 96336, 96360, 96366, 96372, 96486, 96540, 96576, 96666, 96690, 96720, |
96762, 96780, 96816, 96840, 96846, 96876, 96906, 96912, 96936, 96996, 97026, 97056, 97092, 97116, |
97176, 97230, 97260, 97266, 97272, 97296, 97326, 97356, 97422, 97446, 97452, 97476, 97566, 97572, |
97590, 97596, 97626, 97632, 97656, 97716, 97746, 97770, 97776, 97782, 97836, 97842, 97866, 97890, |
97896, 97926, 97950, 97962, 97986, 98016, 98040, 98076, 98130, 98136, 98166, 98196, 98220, 98226, |
98250, 98256, 98262, 98286, 98292, 98316, 98346, 98412, 98466, 98496, 98502, 98526, 98532, 98556, |
98562, 98580, 98586, 98610, 98616, 98622, 98640, 98646, 98670, 98676, 98682, 98700, 98706, 98712, |
98730, 98742, 98772, 98796, 98802, 98826, 98832, 98856, 98886, 98910, 98916, 98940, 98952, 98976, |
99000, 99036, 99066, 99090, 99096, 99120, 99126, 99156, 99162, 99180, 99186, 99210, 99216, 99222, |
99240, 99246, 99252, 99270, 99282, 99306, 99312, 99330, 99336, 99342, 99372, 99390, 99396, 99402, |
99432, 99450, 99456, 99486, 99516, 99540, 99546, 99576, 99612, 99666, 99672, 99690, 99696, 99702, |
99720, 99726, 99750, 99756, 99786, 99792, 99810, 99816, 99846, 99876, 99906, 99936, 99942, 99966, |
99972, 99996, 100026, 100032, 100062, 100086, 100110, 100116, 100122, 100140, 100146, 100170, |
100176, 100182, 100200, 100206, 100212, 100236, 100242, 100260, 100266, 100290, 100296, 100350, |
100356, 100380, 100446, 100452, 100476, 100482, 100500, 100506, 100512, 100536, 100542, 100560, |
100566, 100590, 100596, 100626, 100650, 100656, 100662, 100680, 100686, 100716, 100722, 100746, |
100752, 100770, 100776, 100782, 100800, 100806, 100842, 100860, 100872, 100896, 100902, 100920, |
100926, 100956, 100980, 100986, 100992, 101046, 101052, 101070, 101076, 101082, 101106, 101112, |
101130, 101136, 101142, 101160, 101166, 101196, 101202, 101226, 101232, 101250, 101256, 101280, |
101286, 101316, 101376, 101382, 101400, 101406, 101412, 101436, 101442, 101472, 101496, 101526, |
101532, 101550, 101556, 101586, 101616, 101622, 101640, 101646, 101652, 101670, 101676, 101700, |
101706, 101730, 101736, 101760, 101766, 101772, 101790, 101796, 101802, 101820, 101826, 101850, |
101856, 101862, 101880, 101892, 101910, 101916, 101940, 101946, 101952, 101970, 101976, 101982, |
102000, 102006, 102030, 102036, 102042, 102066, 102072, 102096, 102120, 102126, 102150, 102156, |
102180, 102186, 102210, 102216, 102240, 102246, 102252, 102270, 102312, 102336, 102342, 102360, |
102366, 102372, 102402, 102420, 102426, 102456, 102480, 102486, 102492, 102516, 102540, 102546, |
102570, 102576, 102582, 102606, 102636, 102660, 102666, 102672, 102690, 102696, 102702, 102726, |
102732, 102750, 102756, 102780, 102786, 102792, 102816, 102840, 102846, 102870, 102876, 102906, |
102930, 102936, 102942, 102966, 102972, 102996, 103002, 103020, 103026, 103032, 103050, 103056, |
103080, 103086, 103092, 103116, 103140, 103146, 103176, 103182, 103206, 103236, 103266, 103272, |
103296, 103320, 103326, 103332, 103356, 103380, 103386, 103410, 103416, 103422, 103452, 103500, |
103506, 103530, 103560, 103566, 103590, 103596, 103632, 103650, 103656, 103686, 103692, 103710, |
103716, 103722, 103740, 103746, 103752, 103770, 103776, 103800, 103806, 103830, 103836, 103860, |
103896, 103932, 103962, 103986, 104022, 104046, 104076, 104106, 104166, 104220, 104226, 104232, |
104256, 104286, 104316, 104346, 104436, 104442, 104496, 104502, 104532, 104556, 104580, 104592, |
104616, 104622, 104646, 104652, 104676, 104736, 104772, 104796, 104820, 104880, 104886, 104892, |
104910, 104916, 104970, 104982, 105066, 105096, 105156, 105336, 105396, 105426, 105456, 105510, |
105546, 105576, 105636, 105666, 105696, 105762, 105966, 106152, 106236, 106266, 106290, 106386, |
106626, 106662, 106812, 106836, 107220, 107406, 108486, 108600 |
Numbers of codewords of weight 20 |
93180, 93936, 94512, 95136, 95202, 95376, 95496, 95532, 95826, 95946, 95952, 96012, 96096, 96126, |
96156, 96216, 96240, 96312, 96336, 96360, 96366, 96372, 96486, 96540, 96576, 96666, 96690, 96720, |
96762, 96780, 96816, 96840, 96846, 96876, 96906, 96912, 96936, 96996, 97026, 97056, 97092, 97116, |
97176, 97230, 97260, 97266, 97272, 97296, 97326, 97356, 97422, 97446, 97452, 97476, 97566, 97572, |
97590, 97596, 97626, 97632, 97656, 97716, 97746, 97770, 97776, 97782, 97836, 97842, 97866, 97890, |
97896, 97926, 97950, 97962, 97986, 98016, 98040, 98076, 98130, 98136, 98166, 98196, 98220, 98226, |
98250, 98256, 98262, 98286, 98292, 98316, 98346, 98412, 98466, 98496, 98502, 98526, 98532, 98556, |
98562, 98580, 98586, 98610, 98616, 98622, 98640, 98646, 98670, 98676, 98682, 98700, 98706, 98712, |
98730, 98742, 98772, 98796, 98802, 98826, 98832, 98856, 98886, 98910, 98916, 98940, 98952, 98976, |
99000, 99036, 99066, 99090, 99096, 99120, 99126, 99156, 99162, 99180, 99186, 99210, 99216, 99222, |
99240, 99246, 99252, 99270, 99282, 99306, 99312, 99330, 99336, 99342, 99372, 99390, 99396, 99402, |
99432, 99450, 99456, 99486, 99516, 99540, 99546, 99576, 99612, 99666, 99672, 99690, 99696, 99702, |
99720, 99726, 99750, 99756, 99786, 99792, 99810, 99816, 99846, 99876, 99906, 99936, 99942, 99966, |
99972, 99996, 100026, 100032, 100062, 100086, 100110, 100116, 100122, 100140, 100146, 100170, |
100176, 100182, 100200, 100206, 100212, 100236, 100242, 100260, 100266, 100290, 100296, 100350, |
100356, 100380, 100446, 100452, 100476, 100482, 100500, 100506, 100512, 100536, 100542, 100560, |
100566, 100590, 100596, 100626, 100650, 100656, 100662, 100680, 100686, 100716, 100722, 100746, |
100752, 100770, 100776, 100782, 100800, 100806, 100842, 100860, 100872, 100896, 100902, 100920, |
100926, 100956, 100980, 100986, 100992, 101046, 101052, 101070, 101076, 101082, 101106, 101112, |
101130, 101136, 101142, 101160, 101166, 101196, 101202, 101226, 101232, 101250, 101256, 101280, |
101286, 101316, 101376, 101382, 101400, 101406, 101412, 101436, 101442, 101472, 101496, 101526, |
101532, 101550, 101556, 101586, 101616, 101622, 101640, 101646, 101652, 101670, 101676, 101700, |
101706, 101730, 101736, 101760, 101766, 101772, 101790, 101796, 101802, 101820, 101826, 101850, |
101856, 101862, 101880, 101892, 101910, 101916, 101940, 101946, 101952, 101970, 101976, 101982, |
102000, 102006, 102030, 102036, 102042, 102066, 102072, 102096, 102120, 102126, 102150, 102156, |
102180, 102186, 102210, 102216, 102240, 102246, 102252, 102270, 102312, 102336, 102342, 102360, |
102366, 102372, 102402, 102420, 102426, 102456, 102480, 102486, 102492, 102516, 102540, 102546, |
102570, 102576, 102582, 102606, 102636, 102660, 102666, 102672, 102690, 102696, 102702, 102726, |
102732, 102750, 102756, 102780, 102786, 102792, 102816, 102840, 102846, 102870, 102876, 102906, |
102930, 102936, 102942, 102966, 102972, 102996, 103002, 103020, 103026, 103032, 103050, 103056, |
103080, 103086, 103092, 103116, 103140, 103146, 103176, 103182, 103206, 103236, 103266, 103272, |
103296, 103320, 103326, 103332, 103356, 103380, 103386, 103410, 103416, 103422, 103452, 103500, |
103506, 103530, 103560, 103566, 103590, 103596, 103632, 103650, 103656, 103686, 103692, 103710, |
103716, 103722, 103740, 103746, 103752, 103770, 103776, 103800, 103806, 103830, 103836, 103860, |
103896, 103932, 103962, 103986, 104022, 104046, 104076, 104106, 104166, 104220, 104226, 104232, |
104256, 104286, 104316, 104346, 104436, 104442, 104496, 104502, 104532, 104556, 104580, 104592, |
104616, 104622, 104646, 104652, 104676, 104736, 104772, 104796, 104820, 104880, 104886, 104892, |
104910, 104916, 104970, 104982, 105066, 105096, 105156, 105336, 105396, 105426, 105456, 105510, |
105546, 105576, 105636, 105666, 105696, 105762, 105966, 106152, 106236, 106266, 106290, 106386, |
106626, 106662, 106812, 106836, 107220, 107406, 108486, 108600 |
Numbers of codewords of weight |
21376, 21824, 22016, 22400, 22464, 22880, 22944, 23008, 23104, 23136, 23232, |
23296, 23328, 23360, 23392, 23520, 23552, 23616, 23648, 23680, 23808, 23936, |
24000, 24032, 24064, 24096, 24128, 24160, 24192, 24224, 24256, 24288, 24320, |
24352, 24384, 24416, 24448, 24480, 24512, 24544, 24576, 24640, 24672, 24704, |
24736, 24768, 24800, 24832, 24864, 24896, 24928, 24960, 24992, 25024, 25056, |
25088, 25120, 25152, 25184, 25216, 25248, 25280, 25312, 25344, 25376, 25408, |
25440, 25472, 25504, 25536, 25568, 25600, 25632, 25664, 25696, 25728, 25760, |
25824, 25856, 25888, 25920, 25952, 25984, 26016, 26048, 26080, 26112, 26144, |
26176, 26208, 26240, 26272, 26304, 26336, 26368, 26400, 26432, 26464, 26496, |
26528, 26560, 26592, 26624, 26656, 26688, 26720, 26752, 26784, 26816, 26848, |
26880, 26912, 26944, 26976, 27008, 27040, 27072, 27104, 27136, 27168, 27200, |
27232, 27264, 27296, 27328, 27360, 27392, 27424, 27456, 27488, 27520, 27584, |
27616, 27648, 27680, 27712, 27744, 27776, 27808, 27840, 27872, 27904, 27936, |
27968, 28000, 28032, 28064, 28096, 28128, 28160, 28192, 28224, 28256, 28288, |
28320, 28352, 28384, 28416, 28448, 28480, 28512, 28544, 28576, 28608, 28640, |
28736, 28768, 28800, 28832, 28864, 28896, 28928, 28992, 29024, 29056, 29088, |
29120, 29152, 29216, 29248, 29312, 29344, 29376, 29536, 29600, 29632, 29696, |
29760, 29792, 29824, 29856, 29888, 30048, 30144, 30176, 30208, 30240, 30304, |
30368, 31584 |
Numbers of codewords of weight |
21376, 21824, 22016, 22400, 22464, 22880, 22944, 23008, 23104, 23136, 23232, |
23296, 23328, 23360, 23392, 23520, 23552, 23616, 23648, 23680, 23808, 23936, |
24000, 24032, 24064, 24096, 24128, 24160, 24192, 24224, 24256, 24288, 24320, |
24352, 24384, 24416, 24448, 24480, 24512, 24544, 24576, 24640, 24672, 24704, |
24736, 24768, 24800, 24832, 24864, 24896, 24928, 24960, 24992, 25024, 25056, |
25088, 25120, 25152, 25184, 25216, 25248, 25280, 25312, 25344, 25376, 25408, |
25440, 25472, 25504, 25536, 25568, 25600, 25632, 25664, 25696, 25728, 25760, |
25824, 25856, 25888, 25920, 25952, 25984, 26016, 26048, 26080, 26112, 26144, |
26176, 26208, 26240, 26272, 26304, 26336, 26368, 26400, 26432, 26464, 26496, |
26528, 26560, 26592, 26624, 26656, 26688, 26720, 26752, 26784, 26816, 26848, |
26880, 26912, 26944, 26976, 27008, 27040, 27072, 27104, 27136, 27168, 27200, |
27232, 27264, 27296, 27328, 27360, 27392, 27424, 27456, 27488, 27520, 27584, |
27616, 27648, 27680, 27712, 27744, 27776, 27808, 27840, 27872, 27904, 27936, |
27968, 28000, 28032, 28064, 28096, 28128, 28160, 28192, 28224, 28256, 28288, |
28320, 28352, 28384, 28416, 28448, 28480, 28512, 28544, 28576, 28608, 28640, |
28736, 28768, 28800, 28832, 28864, 28896, 28928, 28992, 29024, 29056, 29088, |
29120, 29152, 29216, 29248, 29312, 29344, 29376, 29536, 29600, 29632, 29696, |
29760, 29792, 29824, 29856, 29888, 30048, 30144, 30176, 30208, 30240, 30304, |
30368, 31584 |
[1] |
Sihuang Hu, Gabriele Nebe. There is no $[24,12,9]$ doubly-even self-dual code over $\mathbb F_4$. Advances in Mathematics of Communications, 2016, 10 (3) : 583-588. doi: 10.3934/amc.2016027 |
[2] |
Masaaki Harada, Takuji Nishimura. An extremal singly even self-dual code of length 88. Advances in Mathematics of Communications, 2007, 1 (2) : 261-267. doi: 10.3934/amc.2007.1.261 |
[3] |
Masaaki Harada, Ethan Novak, Vladimir D. Tonchev. The weight distribution of the self-dual $[128,64]$ polarity design code. Advances in Mathematics of Communications, 2016, 10 (3) : 643-648. doi: 10.3934/amc.2016032 |
[4] |
Masaaki Harada, Akihiro Munemasa. On the covering radii of extremal doubly even self-dual codes. Advances in Mathematics of Communications, 2007, 1 (2) : 251-256. doi: 10.3934/amc.2007.1.251 |
[5] |
María Chara, Ricardo A. Podestá, Ricardo Toledano. The conorm code of an AG-code. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021018 |
[6] |
Martino Borello, Francesca Dalla Volta, Gabriele Nebe. The automorphism group of a self-dual $[72,36,16]$ code does not contain $\mathcal S_3$, $\mathcal A_4$ or $D_8$. Advances in Mathematics of Communications, 2013, 7 (4) : 503-510. doi: 10.3934/amc.2013.7.503 |
[7] |
Laura Luzzi, Ghaya Rekaya-Ben Othman, Jean-Claude Belfiore. Algebraic reduction for the Golden Code. Advances in Mathematics of Communications, 2012, 6 (1) : 1-26. doi: 10.3934/amc.2012.6.1 |
[8] |
Irene Márquez-Corbella, Edgar Martínez-Moro, Emilio Suárez-Canedo. On the ideal associated to a linear code. Advances in Mathematics of Communications, 2016, 10 (2) : 229-254. doi: 10.3934/amc.2016003 |
[9] |
Serhii Dyshko. On extendability of additive code isometries. Advances in Mathematics of Communications, 2016, 10 (1) : 45-52. doi: 10.3934/amc.2016.10.45 |
[10] |
Andrea Seidl, Stefan Wrzaczek. Opening the source code: The threat of forking. Journal of Dynamics and Games, 2022 doi: 10.3934/jdg.2022010 |
[11] |
Minjia Shi, Daitao Huang, Lin Sok, Patrick Solé. Double circulant self-dual and LCD codes over Galois rings. Advances in Mathematics of Communications, 2019, 13 (1) : 171-183. doi: 10.3934/amc.2019011 |
[12] |
Michael Kiermaier, Johannes Zwanzger. A $\mathbb Z$4-linear code of high minimum Lee distance derived from a hyperoval. Advances in Mathematics of Communications, 2011, 5 (2) : 275-286. doi: 10.3934/amc.2011.5.275 |
[13] |
Stefka Bouyuklieva, Iliya Bouyukliev. Classification of the extremal formally self-dual even codes of length 30. Advances in Mathematics of Communications, 2010, 4 (3) : 433-439. doi: 10.3934/amc.2010.4.433 |
[14] |
Masaaki Harada, Katsushi Waki. New extremal formally self-dual even codes of length 30. Advances in Mathematics of Communications, 2009, 3 (4) : 311-316. doi: 10.3934/amc.2009.3.311 |
[15] |
Denis S. Krotov, Patric R. J. Östergård, Olli Pottonen. Non-existence of a ternary constant weight $(16,5,15;2048)$ diameter perfect code. Advances in Mathematics of Communications, 2016, 10 (2) : 393-399. doi: 10.3934/amc.2016013 |
[16] |
M. De Boeck, P. Vandendriessche. On the dual code of points and generators on the Hermitian variety $\mathcal{H}(2n+1,q^{2})$. Advances in Mathematics of Communications, 2014, 8 (3) : 281-296. doi: 10.3934/amc.2014.8.281 |
[17] |
Suat Karadeniz, Bahattin Yildiz. Double-circulant and bordered-double-circulant constructions for self-dual codes over $R_2$. Advances in Mathematics of Communications, 2012, 6 (2) : 193-202. doi: 10.3934/amc.2012.6.193 |
[18] |
Bram van Asch, Frans Martens. A note on the minimum Lee distance of certain self-dual modular codes. Advances in Mathematics of Communications, 2012, 6 (1) : 65-68. doi: 10.3934/amc.2012.6.65 |
[19] |
Olof Heden. The partial order of perfect codes associated to a perfect code. Advances in Mathematics of Communications, 2007, 1 (4) : 399-412. doi: 10.3934/amc.2007.1.399 |
[20] |
Sascha Kurz. The $[46, 9, 20]_2$ code is unique. Advances in Mathematics of Communications, 2021, 15 (3) : 415-422. doi: 10.3934/amc.2020074 |
2020 Impact Factor: 0.935
Tools
Metrics
Other articles
by authors
[Back to Top]