[1]
|
E. Bannai, S. T. Dougherty, M. Harada and M. Oura, Type Ⅱ codes, even unimodular lattices, and invariant rings, IEEE Trans. Inform. Theory, 45 (1999), 1194-1205.
doi: 10.1109/18.761269.
|
[2]
|
W. Bosma, J. J. Cannon and C. Fieker, A. Steel: Handbook of Magma functions, Edition 2.22 5669 pages, 2016, http://magma.maths.usyd.edu.au/magma/.
|
[3]
|
J. H. Conway and N. J. A. Sloane, Self-dual codes over the integers modulo $4$, J. Combin. Theory Ser. A, 62 (1993), 30-45.
doi: 10.1016/0097-3165(93)90070-O.
|
[4]
|
S. T. Dougherty, Algebraic Coding Theory over Finite Commutative Rings, SpringerBriefs in Mathematics, Springer, Cham, 2017.
doi: 10.1007/978-3-319-59806-2.
|
[5]
|
S. T. Dougherty and C. Fernández-Córdoba, Codes over $\Bbb Z_{2^k}$, Gray maps and self-dual codes, Adv. in Math. of Commun., 5 (2011), 571-588.
doi: 10.3934/amc.2011.5.571.
|
[6]
|
S. T. Dougherty and C. Fernández-Córdoba, Kernels and ranks of cyclic and negacyclic quaternary codes, Des. Codes Cryptogr., 81 (2016), 347-364.
doi: 10.1007/s10623-015-0163-6.
|
[7]
|
S. T. Dougherty, C. Fernández-Córdoba and R. Ten-Valls, Quasi-cyclic codes as cyclic codes over a family of local rings, Finite Fields Appl., 40 (2016), 138-149.
doi: 10.1016/j.ffa.2016.04.002.
|
[8]
|
S. T. Dougherty, J. Gildea, R. Taylor and A. Tylshchak, Group Rings, $G$-codes and constructions of self-dual and formally self-dual codes, Des. Codes Cryptogr., 86 (2018), 2115-2138.
doi: 10.1007/s10623-017-0440-7.
|
[9]
|
C. Fernández-Córdoba, J. Pujol and M. Villanueva, On rank and kernel of $ {\mathbb{Z}}_4$-linear codes, Lecture Notes in Computer Science, 5228 (2008), 46-55.
|
[10]
|
R. A. Ferraz, F. S. Dutra and C. Polcino Milies, Semisimple group codes and dihedral codes, Algebra Discrete Math., (2009), 28-48.
|
[11]
|
J. Gildea, A. Kaya, R. Taylor and B. Yildiz, Constructions for self-dual codes induced from group rings, Finite Fields Appl., 51 (2018), 71-92.
doi: 10.1016/j.ffa.2018.01.002.
|
[12]
|
M. Guerreiro, Group algebras and coding theory, São Paulo Journal of Mathematical Sciences, 10 (2016), 346-371.
doi: 10.1007/s40863-016-0040-x.
|
[13]
|
A. R. J. Hammons, P. V. Kumar, A. R. Calderbank, N. J. A. Sloane and P. Solé, The $ {\mathbb{Z}}_4$-linearity of Kerdock, Preparata, Goethals, and related codes, IEEE Trans. Inform. Theory, 40 (1994), 301-319.
doi: 10.1109/18.312154.
|
[14]
|
T. Hurley, Group rings and rings of matrices, Int. Jour. Pure and Appl. Math., 31 (2006), 319-33.
|
[15]
|
F. J. MacWilliams, Binary codes which are ideals in the group algebra of an Abelian group, Bell System Tech. J., 49 (1970), 987-1011.
doi: 10.1002/j.1538-7305.1970.tb01812.x.
|
[16]
|
J. MacWilliams, Codes and ideals in group algebras, Combinatorial Mathematics and its Applications, Univ. North Carolina Press, Chapel Hill, N.C., (1969), 317–328.
|
[17]
|
O. Ore, Theory of non-commutative polynomials, Annals of Mathematics, 34 (1933), 480-508.
doi: 10.2307/1968173.
|
[18]
|
V. Pless, P. Solé and Z. Q. Qian, Cyclic self-dual $ {\mathbb{Z}}_4$-codes, with an appendix by Pieter Moree, Finite Fields Appl., 3 (1997), 48-69.
doi: 10.1006/ffta.1996.0172.
|
[19]
|
V. S. Pless and Z. Q. Qian, Cyclic codes and quadratic residue codes over $ {\mathbb{Z}}_4$, IEEE Trans. Inform. Theory, 42 (1996), 1594-1600.
doi: 10.1109/18.532906.
|
[20]
|
D. J. S. Robinson, A Course in the Theory of Groups, Graduate Texts in Mathematics, 80, Springer-Verlag, New York, 1993.
|