In this paper, we introduce additive Toeplitz codes over $ \mathbb{F}_{4} $. The additive Toeplitz codes are a generalization of additive circulant codes over $ \mathbb{F}_{4} $. We find many optimal additive Toeplitz codes (OATC) over $ \mathbb{F}_{4} $. These optimal codes also contain optimal non-circulant codes, so we find new additive codes in this manner. We provide some theorems to partially classify OATC. Then, we give a new algorithm that fully classifies OATC by combining these theorems with Gaborit's algorithm. We classify OATC over $ \mathbb{F}_{4} $ of length up to $ 13 $. We obtain $ 2 $ inequivalent optimal additive toeplitz codes (IOATC) that are non-circulant codes of length $ 5 $, $ 92 $ of length $ 8 $, $ 2068 $ of length $ 9 $, and $ 39 $ of length $ 11 $. Moreover, we improve an idea related to quadratic residue codes to construct optimal and near-optimal additive Toeplitz codes over $ \mathbb{F}_{4} $ of length prime $ p $. We obtain many optimal and near-optimal additive Toeplitz codes for some primes $ p $ from this construction.
Citation: |
Table 2.1. Number of OATC
Table 2.2.
The Generator Vectors of Optimal Additive Circulant Codes for
Upper Generator Vectors | Lower Generator Vectors |
Table 2.3.
The Generator Vectors of Optimal Additive Non-Circulant Codes for
Upper Generator Vectors | Lower Generator Vectors |
Table 2.4.
The Generator Vectors of Optimal Additive Toeplitz Code for
Circulant/Non-Circulant | ||
Circulant |
Table 2.5.
The Generator Vectors of Optimal Additive Toeplitz Codes for
Circulant/Non-Circulant | ||
Non-Circulant | ||
Circulant | ||
Non-Circulant | ||
Circulant | ||
Non-Circulant |
Table 2.6.
The Generator Vectors of Optimal Additive Toeplitz Codes for
Circulant/Non-Circulant | ||
Circulant | ||
Non-Circulant | ||
Non-Circulant | ||
Non-Circulant | ||
Non-Circulant | ||
Circulant | ||
Non-Circulant | ||
Non-Circulant |
Table 2.7.
The Generator Vectors of Optimal Additive Toeplitz Codes for
Circulant/Non-Circulant | ||
Circulant | ||
Circulant |
Table 2.8.
The Generator Vectors of Near-Optimal Additive Toeplitz Codes for
Circulant/Non-Circulant | ||
Non-Circulant | ||
Non-Circulant | ||
Circulant |
Table 2.9.
The Generator Vectors of Near-Optimal Additive Toeplitz Code for
Circulant/Non-Circulant | ||
Non-Circulant |
Table 2.10.
The Generator Vectors of Near-Optimal Additive Toeplitz Codes for
Circulant/Non-Circulant | ||
Non-Circulant | ||
Non-Circulant |
Table 2.11.
The Generator Vectors of Near-Optimal Additive Toeplitz Codes for
Circulant/Non-Circulant | ||
Non-Circulant | ||
Circulant | ||
Circulant |
Table 2.12.
The Generator Vectors of Near-Optimal Additive Toeplitz Code for
Circulant/Non-Circulant | ||
Non-Circulant |
Table 2.13.
The Generator Vectors of Near-Optimal Additive Toeplitz Codes for
Circulant/Non-Circulant | ||
Circulant | ||
Circulant |
Table 3.1. Number of Inequivalent Optimal Additive Circulant and Non-Circulant Codes
Table A.1.
The Generator Vector of Optimal Additive Circulant Code for
Upper Generator Vector | Lower Generator Vector |
Table A.2.
The Generator Vectors of Optimal Additive Circulant Codes for
Upper Generator Vectors | Lower Generator Vectors |
Table A.3.
The Generator Vector of Optimal Additive Circulant Code for
Upper Generator Vector | Lower Generator Vector |
Table A.4.
The Generator Vectors of Optimal Additive Circulant Codes for
Upper Generator Vectors | Lower Generator Vectors |
Table A.5.
The Generator Vectors of Optimal Additive Non-Circulant Codes for
Upper Generator Vectors | Lower Generator Vectors |
Table A.6.
The Generator Vector of Optimal Additive Circulant Code for
Upper Generator Vector | Lower Generator Vector |
Table A.7.
The Generator Vector of Optimal Additive Circulant Code for
Upper Generator Vector | Lower Generator Vector |
Table A.8.
The Generator Vectors of Optimal Additive Circulant Codes for
Upper Generator Vectors | Lower Generator Vectors |
Table A.9.
The Generator Vectors of Optimal Additive Non-Circulant Codes for
Upper Generator Vectors | Lower Generator Vectors |
Table A.10.
The Generator Vectors of Optimal Additive Non-Circulant Codes for
Upper Generator Vectors | Lower Generator Vectors |
Table A.11.
The Generator Vectors of Optimal Additive Circulant Codes for
Upper Generator Vectors | Lower Generator Vectors |
Table A.12.
The Generator Vectors of Optimal Additive Circulant Codes for
Upper Generator Vectors | Lower Generator Vectors |
Table A.13.
The Generator Vectors of Optimal Additive Circulant Codes for
Upper Generator Vectors | Lower Generator Vectors |
Table A.14.
The Generator Vectors of Optimal Additive Non-Circulant Codes for
Upper Generator Vectors | Lower Generator Vectors |
Table A.15.
The Generator Vectors of Optimal Additive Circulant Codes for
Upper Generator Vectors | Lower Generator Vectors |
Table A.16.
The Generator Vectors of Optimal Additive Circulant Codes for
Upper Generator Vectors | Lower Generator Vectors |
[1] |
A. R. Calderbank, E. M. Rains, P. M. Shor and N. J. A. Sloane, Quantum error correction via codes over GF(4), IEEE Trans. Inform. Theory, 44 (1998), 1369-1387.
doi: 10.1109/18.681315.![]() ![]() |
[2] |
J. Cannon, W. Bosma, C. Fieker and A. Steel, Handbook of Magma Functions, Version 2.19, Sydney, 2013.
![]() |
[3] |
L. E. Danielsen and M. G. Parker, Directed graph representation of half-rate additive codes over GF(4), Des. Codes Cryptogr., 59 (2011), 119-130.
doi: 10.1007/s10623-010-9469-6.![]() ![]() |
[4] |
L. E. Danielsen and M. G. Parker, On the classification of all self-dual additive codes over GF(4) of length up to 12, J. Combin. Theory Ser. A, 113 (2006), 1351-1367.
doi: 10.1016/j.jcta.2005.12.004.![]() ![]() |
[5] |
P. Gaborit, W. C. Huffman, J. L. Kim and V. Pless, On additive GF(4) codes, DIMACS Workshop Codes Assoc. Schemes, DIMACS Ser. Discr. Math. Theoret. Comp. Sci., Amer. Math. Soc., 56 (2001), 135-149.
![]() |
[6] |
T. A. Gulliver and J.-L. Kim, Circulant based extremal additive self-dual codes over GF(4), IEEE Trans. on Inform. Theory, 50 (2004), 359-366.
doi: 10.1109/TIT.2003.822616.![]() ![]() |
[7] |
G. Höhn, Self-dual codes over the Kleinian four group, Math. Ann., 327 (2003), 227-255.
doi: 10.1007/s00208-003-0440-y.![]() ![]() |
[8] |
P. R. J. Östergard, Classifying subspaces of Hamming spaces, Des. Codes Cryptogr., 27 (2002), 297-305.
doi: 10.1023/A:1019903407222.![]() ![]() |
[9] |
V. S. Pless and W. C. Huffman, Handbook of Coding Theory, North-Holland, Amsterdam, 1998.
![]() |
[10] |
Z. Varbanov, Some new results for additive self-dual codes over GF(4), Serdica J. Comput., 1 (2007), 213-227.
![]() |