February  2021, 15(1): 1-8. doi: 10.3934/amc.2020038

New bounds on the minimum distance of cyclic codes

School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371

* Corresponding author

Received  December 2018 Revised  June 2019 Published  November 2019

Fund Project: The authors are supported by NTU Research Grant M4080456

Two bounds on the minimum distance of cyclic codes are proposed. The first one generalizes the Roos bound by embedding the given cyclic code into a cyclic product code. The second bound also uses a second cyclic code, namely the non-zero-locator code, but is not directly related to cyclic product codes and it generalizes a special case of the Roos bound.

Citation: San Ling, Buket Özkaya. New bounds on the minimum distance of cyclic codes. Advances in Mathematics of Communications, 2021, 15 (1) : 1-8. doi: 10.3934/amc.2020038
References:
[1]

R. C. Bose and D. K. R. Chaudhuri, On a class of error correcting binary group code, Information and Control, 3 (1960), 68-79.  doi: 10.1016/S0019-9958(60)90287-4.  Google Scholar

[2]

H. O. Burton and E. J. Weldon, Cyclic product codes, IEEE Trans. Information Theory, 11 (1965), 433-439.  doi: 10.1109/tit.1965.1053802.  Google Scholar

[3]

C. Hartmann and K. Tzeng, Generalizations of the BCH bound, Information and Control, 20 (1972), 489-498.  doi: 10.1016/S0019-9958(72)90887-X.  Google Scholar

[4]

A. Hocquenghem, Codes correcteurs d'erreurs, Chiffres, 2 (1959), 147-156.   Google Scholar

[5]

S. Lin and E. J. Weldon, Further results on cyclic product codes, IEEE Trans. Information Theory, 16 (1970), 452-459.  doi: 10.1109/tit.1970.1054491.  Google Scholar

[6]

C. Roos, A generalization of the BCH bound for cyclic codes, including the Hartmann-Tzeng bound, J. Combin. Theory Ser. A, 33 (1982), 229-232.  doi: 10.1016/0097-3165(82)90014-0.  Google Scholar

[7]

C. Roos, A new lower bound for the minimum distance of a cyclic code, IEEE Trans. Inform. Theory, 29 (1983), 330-332.  doi: 10.1109/TIT.1983.1056672.  Google Scholar

[8]

A. Zeh and S. V. Bezzateev, A new bound on the minimum distance of cyclic codes using small-minimum-distance cyclic codes, Des. Codes Cryptogr., 71 (2014), 229-246.  doi: 10.1007/s10623-012-9721-3.  Google Scholar

[9]

A. Zeh, A. Wachter-Zeh, M. Gadouleau and S. V. Bezzateev, Generalizing bounds on the minimum distance of cyclic codes using cyclic product codes, Proc. IEEE ISIT, Istanbul, Turkey, 2013,126–130. doi: 10.1109/ISIT.2013.6620201.  Google Scholar

show all references

References:
[1]

R. C. Bose and D. K. R. Chaudhuri, On a class of error correcting binary group code, Information and Control, 3 (1960), 68-79.  doi: 10.1016/S0019-9958(60)90287-4.  Google Scholar

[2]

H. O. Burton and E. J. Weldon, Cyclic product codes, IEEE Trans. Information Theory, 11 (1965), 433-439.  doi: 10.1109/tit.1965.1053802.  Google Scholar

[3]

C. Hartmann and K. Tzeng, Generalizations of the BCH bound, Information and Control, 20 (1972), 489-498.  doi: 10.1016/S0019-9958(72)90887-X.  Google Scholar

[4]

A. Hocquenghem, Codes correcteurs d'erreurs, Chiffres, 2 (1959), 147-156.   Google Scholar

[5]

S. Lin and E. J. Weldon, Further results on cyclic product codes, IEEE Trans. Information Theory, 16 (1970), 452-459.  doi: 10.1109/tit.1970.1054491.  Google Scholar

[6]

C. Roos, A generalization of the BCH bound for cyclic codes, including the Hartmann-Tzeng bound, J. Combin. Theory Ser. A, 33 (1982), 229-232.  doi: 10.1016/0097-3165(82)90014-0.  Google Scholar

[7]

C. Roos, A new lower bound for the minimum distance of a cyclic code, IEEE Trans. Inform. Theory, 29 (1983), 330-332.  doi: 10.1109/TIT.1983.1056672.  Google Scholar

[8]

A. Zeh and S. V. Bezzateev, A new bound on the minimum distance of cyclic codes using small-minimum-distance cyclic codes, Des. Codes Cryptogr., 71 (2014), 229-246.  doi: 10.1007/s10623-012-9721-3.  Google Scholar

[9]

A. Zeh, A. Wachter-Zeh, M. Gadouleau and S. V. Bezzateev, Generalizing bounds on the minimum distance of cyclic codes using cyclic product codes, Proc. IEEE ISIT, Istanbul, Turkey, 2013,126–130. doi: 10.1109/ISIT.2013.6620201.  Google Scholar

[1]

Jérôme Ducoat, Frédérique Oggier. On skew polynomial codes and lattices from quotients of cyclic division algebras. Advances in Mathematics of Communications, 2016, 10 (1) : 79-94. doi: 10.3934/amc.2016.10.79

[2]

Hakan Özadam, Ferruh Özbudak. A note on negacyclic and cyclic codes of length $p^s$ over a finite field of characteristic $p$. Advances in Mathematics of Communications, 2009, 3 (3) : 265-271. doi: 10.3934/amc.2009.3.265

[3]

Rafael G. L. D'Oliveira, Marcelo Firer. Minimum dimensional Hamming embeddings. Advances in Mathematics of Communications, 2017, 11 (2) : 359-366. doi: 10.3934/amc.2017029

[4]

Christopher Bose, Rua Murray. Minimum 'energy' approximations of invariant measures for nonsingular transformations. Discrete & Continuous Dynamical Systems - A, 2006, 14 (3) : 597-615. doi: 10.3934/dcds.2006.14.597

[5]

Lucas C. F. Ferreira, Jhean E. Pérez-López, Élder J. Villamizar-Roa. On the product in Besov-Lorentz-Morrey spaces and existence of solutions for the stationary Boussinesq equations. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2423-2439. doi: 10.3934/cpaa.2018115

[6]

Alexander A. Davydov, Massimo Giulietti, Stefano Marcugini, Fernanda Pambianco. Linear nonbinary covering codes and saturating sets in projective spaces. Advances in Mathematics of Communications, 2011, 5 (1) : 119-147. doi: 10.3934/amc.2011.5.119

[7]

W. Cary Huffman. On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes. Advances in Mathematics of Communications, 2013, 7 (3) : 349-378. doi: 10.3934/amc.2013.7.349

2019 Impact Factor: 0.734

Metrics

  • PDF downloads (227)
  • HTML views (575)
  • Cited by (0)

Other articles
by authors

[Back to Top]