-
Previous Article
A new class of $ p $-ary regular bent functions
- AMC Home
- This Issue
-
Next Article
Golay complementary sets with large zero odd-periodic correlation zones
On Hadamard full propelinear codes with associated group $ C_{2t}\times C_2 $
Department of Information and Communications Engineering, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain |
We introduce the Hadamard full propelinear codes that factorize as direct product of groups such that their associated group is $ C_{2t}\times C_2 $. We study the rank, the dimension of the kernel, and the structure of these codes. For several specific parameters we establish some links from circulant Hadamard matrices and the nonexistence of the codes we study. We prove that the dimension of the kernel of these codes is bounded by $ 3 $ if the code is nonlinear. We also get an equivalence between circulant complex Hadamard matrix and a type of Hadamard full propelinear code, and we find a new example of circulant complex Hadamard matrix of order $ 16 $.
References:
[1] |
V. Álvarez, F. Gudiel and M. B. Güemes,
On $\mathbb{Z}_t\times \mathbb{Z}_2^2$-cocyclic Hadamard matrices, J. Combin. Des., 23 (2015), 352-368.
doi: 10.1002/jcd.21406. |
[2] |
K. T. Arasu, W. de Launey and S. L. Ma,
On circulant complex Hadamard matrices, Des. Codes Cryptogr., 25 (2002), 123-142.
doi: 10.1023/A:1013817013980. |
[3] |
E. F. Assmus, Jr and J. D. Key, Designs and Their Codes, Cambridge Tracts in Mathematics, 103. Cambridge University Press, Cambridge, 1992.
doi: 10.1017/CBO9781316529836.![]() ![]() |
[4] |
I. Bailera, J. Borges and J. Rifà,
About some Hadamard full propelinear (2t, 2, 2)-codes. Rank and kernel, Electron. Notes Discret. Math., 54 (2016), 319-324.
doi: 10.1016/j.endm.2016.09.055. |
[5] |
A. Baliga and K. J. Horadam,
Cocyclic Hadamard matrices over $ {\mathbb{Z}}_t \times {\mathbb{Z}}_2^2$, Australas. J. Combin., 11 (1995), 123-134.
|
[6] |
S. Barrera Acevedo and H. Dietrich,
Perfect sequences over the quaternions and $(4n, 2, 4n, 2n)$-relative difference sets in $C_n \times Q_8$, Cryptogr. Commun., 10 (2018), 357-368.
doi: 10.1007/s12095-017-0224-y. |
[7] |
J. Borges, I. Y. Mogilnykh, J. Rifà and F. I. Solov'eva,
Structural properties of binary propelinear codes, Adv. Math. Commun., 6 (2012), 329-346.
doi: 10.3934/amc.2012.6.329. |
[8] |
W. Bosma, J. J. Cannon, C. Fieker and A. Steel, Handbook of Magma Functions, Edition 2.22, 2016. Google Scholar |
[9] |
A. T. Butson,
Relations among generalized Hadamard matrices, relative difference sets, and maximal length linear recurring sequences, Canad. J. Math., 15 (1963), 42-48.
doi: 10.4153/CJM-1963-005-3. |
[10] |
W. de Launey, D. L. Flannery and K. J. Horadam,
Cocyclic Hadamard matrices and difference sets, Discret. Appl. Math., 102 (2002), 47-61.
doi: 10.1016/S0166-218X(99)00230-9. |
[11] |
J. F. Dillon,
Some REALLY beautiful Hadamard matrices, Cryptogr. Commun., 2 (2010), 271-292.
doi: 10.1007/s12095-010-0031-1. |
[12] |
D. L. Flannery,
Cocyclic Hadamard matrices and Hadamard groups are equivalent, J. Algebra, 192 (1997), 749-779.
doi: 10.1006/jabr.1996.6949. |
[13] |
W. C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes, Cambridge University Press, Cambridge, 2003.
doi: 10.1017/CBO9780511807077.![]() ![]() |
[14] |
N. Ito,
On Hadamard groups, J. Algebra, 168 (1994), 981-987.
doi: 10.1006/jabr.1994.1266. |
[15] |
N. Ito,
On Hadamard groups. II, J. Algebra, 169 (1994), 936-942.
doi: 10.1006/jabr.1994.1319. |
[16] |
N. Ito,
On Hadamard groups. III, Kyushu J. Math., 51 (1997), 369-379.
doi: 10.2206/kyushujm.51.369. |
[17] |
R. G. Kraemer,
Proof of a conjecture on Hadamard $2$-groups, J. Combin. Theory Ser. A, 63 (1993), 1-10.
doi: 10.1016/0097-3165(93)90012-W. |
[18] |
P. Ó Catháin and M. Röder,
The cocyclic Hadamard matrices of order less than 40, Des. Codes Cryptogr., 58 (2011), 73-88.
doi: 10.1007/s10623-010-9385-9. |
[19] |
K. T. Phelps, J. Rifà and M. Villanueva,
Hadamard codes of length $2^ts$ ($s$ odd). Rank and kernel, Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, Lecture Notes in Comput. Sci., Springer, Berlin, 3857 (2006), 328-337.
doi: 10.1007/11617983_32. |
[20] |
J. Rifà, Circulant Hadamard matrices as HFP-codes of type $C_4n\times C_2$, preprint, arXiv: 1711.09373v1. Google Scholar |
[21] |
J. Rifà, J. M. Basart and L. Huguet,
On completely regular propelinear codes, Applied Algebra, Algebraic Algorithms and Error-Correcting Codes. LNCS, Springer, Berlin, 357 (1989), 341-355.
doi: 10.1007/3-540-51083-4_71. |
[22] |
J. Rifà and E. Suárez Canedo,
Hadamard full propelinear codes of type Q. Rank and kernel, Des. Codes Cryptogr., 86 (2018), 1905-1921.
doi: 10.1007/s10623-017-0429-2. |
[23] |
J. Rifà i Coma and E. Suárez Canedo,
About a class of Hadamard propelinear codes, Conference on Discrete Mathematics and Computer Science, Electron. Notes Discret. Math. Elsevier Sci. B. V., Amsterdam, 46 (2014), 289-296.
doi: 10.1016/j.endm.2014.08.038. |
[24] |
H. J. Ryser, Combinatorial Mathematics, The Carus Mathematical Monographs, No. 14 Published by The Mathematical Association of America, New York, 1963.
doi: 10.1017/S0013091500011299. |
[25] |
B. Schmidt,
Williamson matrices and a conjecture of Ito's, Des. Codes Cryptogr., 17 (1999), 61-68.
doi: 10.1023/A:1008398319853. |
[26] |
R. J. Turyn,
Character sums and difference sets, Pacific J. Math., 15 (1965), 319-346.
doi: 10.2140/pjm.1965.15.319. |
show all references
References:
[1] |
V. Álvarez, F. Gudiel and M. B. Güemes,
On $\mathbb{Z}_t\times \mathbb{Z}_2^2$-cocyclic Hadamard matrices, J. Combin. Des., 23 (2015), 352-368.
doi: 10.1002/jcd.21406. |
[2] |
K. T. Arasu, W. de Launey and S. L. Ma,
On circulant complex Hadamard matrices, Des. Codes Cryptogr., 25 (2002), 123-142.
doi: 10.1023/A:1013817013980. |
[3] |
E. F. Assmus, Jr and J. D. Key, Designs and Their Codes, Cambridge Tracts in Mathematics, 103. Cambridge University Press, Cambridge, 1992.
doi: 10.1017/CBO9781316529836.![]() ![]() |
[4] |
I. Bailera, J. Borges and J. Rifà,
About some Hadamard full propelinear (2t, 2, 2)-codes. Rank and kernel, Electron. Notes Discret. Math., 54 (2016), 319-324.
doi: 10.1016/j.endm.2016.09.055. |
[5] |
A. Baliga and K. J. Horadam,
Cocyclic Hadamard matrices over $ {\mathbb{Z}}_t \times {\mathbb{Z}}_2^2$, Australas. J. Combin., 11 (1995), 123-134.
|
[6] |
S. Barrera Acevedo and H. Dietrich,
Perfect sequences over the quaternions and $(4n, 2, 4n, 2n)$-relative difference sets in $C_n \times Q_8$, Cryptogr. Commun., 10 (2018), 357-368.
doi: 10.1007/s12095-017-0224-y. |
[7] |
J. Borges, I. Y. Mogilnykh, J. Rifà and F. I. Solov'eva,
Structural properties of binary propelinear codes, Adv. Math. Commun., 6 (2012), 329-346.
doi: 10.3934/amc.2012.6.329. |
[8] |
W. Bosma, J. J. Cannon, C. Fieker and A. Steel, Handbook of Magma Functions, Edition 2.22, 2016. Google Scholar |
[9] |
A. T. Butson,
Relations among generalized Hadamard matrices, relative difference sets, and maximal length linear recurring sequences, Canad. J. Math., 15 (1963), 42-48.
doi: 10.4153/CJM-1963-005-3. |
[10] |
W. de Launey, D. L. Flannery and K. J. Horadam,
Cocyclic Hadamard matrices and difference sets, Discret. Appl. Math., 102 (2002), 47-61.
doi: 10.1016/S0166-218X(99)00230-9. |
[11] |
J. F. Dillon,
Some REALLY beautiful Hadamard matrices, Cryptogr. Commun., 2 (2010), 271-292.
doi: 10.1007/s12095-010-0031-1. |
[12] |
D. L. Flannery,
Cocyclic Hadamard matrices and Hadamard groups are equivalent, J. Algebra, 192 (1997), 749-779.
doi: 10.1006/jabr.1996.6949. |
[13] |
W. C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes, Cambridge University Press, Cambridge, 2003.
doi: 10.1017/CBO9780511807077.![]() ![]() |
[14] |
N. Ito,
On Hadamard groups, J. Algebra, 168 (1994), 981-987.
doi: 10.1006/jabr.1994.1266. |
[15] |
N. Ito,
On Hadamard groups. II, J. Algebra, 169 (1994), 936-942.
doi: 10.1006/jabr.1994.1319. |
[16] |
N. Ito,
On Hadamard groups. III, Kyushu J. Math., 51 (1997), 369-379.
doi: 10.2206/kyushujm.51.369. |
[17] |
R. G. Kraemer,
Proof of a conjecture on Hadamard $2$-groups, J. Combin. Theory Ser. A, 63 (1993), 1-10.
doi: 10.1016/0097-3165(93)90012-W. |
[18] |
P. Ó Catháin and M. Röder,
The cocyclic Hadamard matrices of order less than 40, Des. Codes Cryptogr., 58 (2011), 73-88.
doi: 10.1007/s10623-010-9385-9. |
[19] |
K. T. Phelps, J. Rifà and M. Villanueva,
Hadamard codes of length $2^ts$ ($s$ odd). Rank and kernel, Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, Lecture Notes in Comput. Sci., Springer, Berlin, 3857 (2006), 328-337.
doi: 10.1007/11617983_32. |
[20] |
J. Rifà, Circulant Hadamard matrices as HFP-codes of type $C_4n\times C_2$, preprint, arXiv: 1711.09373v1. Google Scholar |
[21] |
J. Rifà, J. M. Basart and L. Huguet,
On completely regular propelinear codes, Applied Algebra, Algebraic Algorithms and Error-Correcting Codes. LNCS, Springer, Berlin, 357 (1989), 341-355.
doi: 10.1007/3-540-51083-4_71. |
[22] |
J. Rifà and E. Suárez Canedo,
Hadamard full propelinear codes of type Q. Rank and kernel, Des. Codes Cryptogr., 86 (2018), 1905-1921.
doi: 10.1007/s10623-017-0429-2. |
[23] |
J. Rifà i Coma and E. Suárez Canedo,
About a class of Hadamard propelinear codes, Conference on Discrete Mathematics and Computer Science, Electron. Notes Discret. Math. Elsevier Sci. B. V., Amsterdam, 46 (2014), 289-296.
doi: 10.1016/j.endm.2014.08.038. |
[24] |
H. J. Ryser, Combinatorial Mathematics, The Carus Mathematical Monographs, No. 14 Published by The Mathematical Association of America, New York, 1963.
doi: 10.1017/S0013091500011299. |
[25] |
B. Schmidt,
Williamson matrices and a conjecture of Ito's, Des. Codes Cryptogr., 17 (1999), 61-68.
doi: 10.1023/A:1008398319853. |
[26] |
R. J. Turyn,
Character sums and difference sets, Pacific J. Math., 15 (1965), 319-346.
doi: 10.2140/pjm.1965.15.319. |
even | |||
even square | |||
even | |||
odd |
even | |||
even square | |||
even | |||
odd |
t | ||||||||
1 | 3 | 3 | 3 | 3 | 3 | 3 | x | x |
2 | 4 | 4 | $\checkmark$ | $\checkmark$ | 4 | 4 | - | - |
3 | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | 11 | 1 |
4 | x | x | 5 | 5 | 7 | 2 | - | - |
6 | 3 | |||||||
5 | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | 19 | 1 |
6 | x | x | $\checkmark$ | $\checkmark$ | x | x | - | - |
7 | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | 27 | 1 |
8 | x | x | $\checkmark$ | $\checkmark$ | 11 | 2 | - | - |
13 | 1 | |||||||
9 | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | 35 | 1 |
10 | x | x | $\checkmark$ | $\checkmark$ | x | x | - | - |
t | ||||||||
1 | 3 | 3 | 3 | 3 | 3 | 3 | x | x |
2 | 4 | 4 | $\checkmark$ | $\checkmark$ | 4 | 4 | - | - |
3 | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | 11 | 1 |
4 | x | x | 5 | 5 | 7 | 2 | - | - |
6 | 3 | |||||||
5 | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | 19 | 1 |
6 | x | x | $\checkmark$ | $\checkmark$ | x | x | - | - |
7 | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | 27 | 1 |
8 | x | x | $\checkmark$ | $\checkmark$ | 11 | 2 | - | - |
13 | 1 | |||||||
9 | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | 35 | 1 |
10 | x | x | $\checkmark$ | $\checkmark$ | x | x | - | - |
[1] |
Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021 |
[2] |
Tao Wu, Yu Lei, Jiao Shi, Maoguo Gong. An evolutionary multiobjective method for low-rank and sparse matrix decomposition. Big Data & Information Analytics, 2017, 2 (1) : 23-37. doi: 10.3934/bdia.2017006 |
[3] |
Alexander A. Davydov, Massimo Giulietti, Stefano Marcugini, Fernanda Pambianco. Linear nonbinary covering codes and saturating sets in projective spaces. Advances in Mathematics of Communications, 2011, 5 (1) : 119-147. doi: 10.3934/amc.2011.5.119 |
[4] |
W. Cary Huffman. On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes. Advances in Mathematics of Communications, 2013, 7 (3) : 349-378. doi: 10.3934/amc.2013.7.349 |
[5] |
Jérôme Ducoat, Frédérique Oggier. On skew polynomial codes and lattices from quotients of cyclic division algebras. Advances in Mathematics of Communications, 2016, 10 (1) : 79-94. doi: 10.3934/amc.2016.10.79 |
[6] |
Manfred Einsiedler, Elon Lindenstrauss. On measures invariant under diagonalizable actions: the Rank-One case and the general Low-Entropy method. Journal of Modern Dynamics, 2008, 2 (1) : 83-128. doi: 10.3934/jmd.2008.2.83 |
[7] |
Hakan Özadam, Ferruh Özbudak. A note on negacyclic and cyclic codes of length $p^s$ over a finite field of characteristic $p$. Advances in Mathematics of Communications, 2009, 3 (3) : 265-271. doi: 10.3934/amc.2009.3.265 |
2019 Impact Factor: 0.734
Tools
Metrics
Other articles
by authors
[Back to Top]