February  2021, 15(1): 99-112. doi: 10.3934/amc.2020045

Complete weight enumerators of a class of linear codes over finite fields

1. 

School of Mathematical Sciences, Qufu Normal University, Shandong, 273165, China

2. 

Department of Mathematics, Nanjing University of Aeronautics and Astronautics, Nanjing, 211100, China

*Corresponding author: Xiangli Kong

Received  April 2019 Published  November 2019

Fund Project: The work is partially supported by the National Natural Science Foundation of China (11701317, 11801303, 11571380) and the Natural Science Foundation of Shandong Province of China (ZR2016AM04). This work is also partially supported by Guangzhou Science and Technology Program (201607010144) and the Natural Science Foundation of Jiangsu Higher Education Institutions of China (17KJB110018)

We investigate a class of linear codes by choosing a proper defining set and determine their complete weight enumerators and weight enumerators. These codes have at most three weights and some of them are almost optimal so that they are suitable for applications in secret sharing schemes. This is a supplement of the results raised by Wang et al. (2017) and Kong et al. (2019).

Citation: Shudi Yang, Xiangli Kong, Xueying Shi. Complete weight enumerators of a class of linear codes over finite fields. Advances in Mathematics of Communications, 2021, 15 (1) : 99-112. doi: 10.3934/amc.2020045
References:
[1]

J. AhnD. Ka and C. J. Li, Complete weight enumerators of a class of linear codes, Designs, Codes and Cryptography, 83 (2017), 83-99.  doi: 10.1007/s10623-016-0205-8.  Google Scholar

[2]

S. BaeC. J. Li and Q. Yue, On the complete weight enumerators of some reducible cyclic codes, Discrete Mathematics, 338 (2015), 2275-2287.  doi: 10.1016/j.disc.2015.05.016.  Google Scholar

[3]

I. F. Blake and K. Kith, On the complete weight enumerator of Reed-Solomon codes, SIAM J. Discret. Math., 4 (1991), 164-171.  doi: 10.1137/0404016.  Google Scholar

[4]

R. S. Coulter, Explicit evaluations of some Weil sums, Acta Arithmetica, 83 (1998), 241-251.  doi: 10.4064/aa-83-3-241-251.  Google Scholar

[5]

R. S. Coulter, Further evaluations of Weil sums, Acta Arithmetica, 86 (1998), 217-226.  doi: 10.4064/aa-86-3-217-226.  Google Scholar

[6]

C. S. Ding, Linear codes from some 2-designs, IEEE Transactions on Information Theory, 61 (2015), 3265-3275.  doi: 10.1109/TIT.2015.2420118.  Google Scholar

[7]

C. S. DingT. HellesethT. Kløve and X. S. Wang, A generic construction of Cartesian authentication codes, IEEE Transactions on Information Theory, 53 (2007), 2229-2235.  doi: 10.1109/TIT.2007.896872.  Google Scholar

[8]

C. S. Ding and X. S. Wang, A coding theory construction of new systematic authentication codes, Theoretical Computer Science, 330 (2005), 81-99.  doi: 10.1016/j.tcs.2004.09.011.  Google Scholar

[9]

C. S. Ding and J. X. Yin, A construction of optimal constant composition codes, Designs, Codes and Cryptography, 40 (2006), 157-165.  doi: 10.1007/s10623-006-0004-8.  Google Scholar

[10]

K. L. Ding and C. S. Ding, Binary linear codes with three weights, IEEE Communications Letters, 18 (2014), 1879-1882.  doi: 10.1109/LCOMM.2014.2361516.  Google Scholar

[11]

K. Ding and C. S. Ding, A class of two-weight and three-weight codes and their applications in secret sharing, IEEE Transactions on Information Theory, 61 (2015), 5835-5842.  doi: 10.1109/TIT.2015.2473861.  Google Scholar

[12]

T. Helleseth and A. Kholosha, Monomial and quadratic bent functions over the finite fields of odd characteristic, IEEE Transactions on Information Theory, 52 (2006), 2018-2032.  doi: 10.1109/TIT.2006.872854.  Google Scholar

[13]

Z. L. Heng and Q. Yue, Complete weight distributions of two classes of cyclic codes, Cryptography and Communications, 9 (2017), 323-343.  doi: 10.1007/s12095-015-0177-y.  Google Scholar

[14]

K. Kith, Complete Weight Enumeration of Reed-Solomon Codes, Master's thesis, University of Waterloo in Waterloo, 1989. Google Scholar

[15]

X. L. Kong and S. D. Yang, Complete weight enumerators of a class of linear codes with two or three weights, Discrete Mathematics, 342 (2019), 3166-3176.  doi: 10.1016/j.disc.2019.06.025.  Google Scholar

[16]

C. J. LiS. BaeJ. AhnS. D. Yang and Z. A. Yao, Complete weight enumerators of some linear codes and their applications, Designs, Codes and Cryptography, 81 (2016), 153-168.  doi: 10.1007/s10623-015-0136-9.  Google Scholar

[17]

C. J. LiS. Bae and S. D. Yang, Some two-weight and three-weight linear codes, Advances in Mathematics of Communications, 13 (2019), 195-211.  doi: 10.3934/amc.2019013.  Google Scholar

[18]

C. J. LiQ. Yue and F. W. Fu, Complete weight enumerators of some cyclic codes, Designs, Codes and Cryptography, 80 (2016), 295-315.  doi: 10.1007/s10623-015-0091-5.  Google Scholar

[19]

C. J. LiQ. Yue and Z. L. Heng, Weight distributions of a class of cyclic codes from $ \mathbb{F}_l $-conjugates, Advances in Mathematics of Communications, 9 (2015), 341-352.  doi: 10.3934/amc.2015.9.341.  Google Scholar

[20]

R. Lidl and H. Niederreiter, Finite Fields, Encyclopedia of Mathematics and its Applications, 20. Addison-Wesley Publishing Company, Advanced Book Program, Reading, MA, 1983.  Google Scholar

[21]

H. B. LiuQ. Y. Liao and X. F. Wang, Complete weight enumerator for a class of linear codes from defining sets and their applications, Journal of Systems Science and Complexity, 32 (2019), 947-969.  doi: 10.1007/s11424-018-7414-3.  Google Scholar

[22]

F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes. I, North-Holland Mathematical Library, Vol. 16. North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977.  Google Scholar

[23]

A. Sharma and G. K. Bakshi, The weight distribution of some irreducible cyclic codes, Finite Fields and Their Applications, 18 (2012), 144-159.  doi: 10.1016/j.ffa.2011.07.002.  Google Scholar

[24]

M. J. Shi and Y. P. Zhang, Quasi-twisted codes with constacyclic constituent codes, Finite Fields and Their Applications, 39 (2016), 159-178.  doi: 10.1016/j.ffa.2016.01.010.  Google Scholar

[25]

M. J. ShiL. Q. QianL. SokN. Aydin and P. Solé, On constacyclic codes over $ \mathbb{Z}_4[u]/\langle u^2-1 \rangle$ and their Gray images, Finite Fields and Their Applications, 45 (2017), 86-95.  doi: 10.1016/j.ffa.2016.11.016.  Google Scholar

[26]

M. J. ShiR. S. WuL. Q. QianL. Sok and P. Solé, New classes of $p$-ary few weight codes, Bulletin of the Malaysian Mathematical Sciences Society, 42 (2019), 1393-1412.  doi: 10.1007/s40840-017-0553-1.  Google Scholar

[27]

L. SokM. J. Shi and P. Solé, Construction of optimal LCD codes over large finite fields, Finite Fields and Their Applications, 50 (2018), 138-153.  doi: 10.1016/j.ffa.2017.11.007.  Google Scholar

[28]

M. van der Vlugt, Hasse-Davenport curves, Gauss sums, and weight distributions of irreducible cyclic codes, Journal of Number Theory, 55 (1995), 145-159.  doi: 10.1006/jnth.1995.1133.  Google Scholar

[29]

G. Vega, The weight distribution for any irreducible cyclic code of length $p^m$, Applicable Algebra in Engineering, Communication and Computing, 29 (2018), 363-370.  doi: 10.1007/s00200-017-0347-6.  Google Scholar

[30]

Q. Y. WangF. LiK. L. Ding and D. D. Lin, Complete weight enumerators of two classes of linear codes, Discrete Mathematics, 340 (2017), 467-480.  doi: 10.1016/j.disc.2016.09.003.  Google Scholar

[31]

Y. S. WuQ. Yue and S. Q. Fan, Further factorization of $x^n -1$ over a finite field, Finite Fields and Their Applications, 54 (2018), 197-215.  doi: 10.1016/j.ffa.2018.07.007.  Google Scholar

[32]

Y. S. WuQ. YueX. M. Zhu and S. D. Yang, Weight enumerators of reducible cyclic codes and their dual codes, Discrete Mathematics, 342 (2019), 671-682.  doi: 10.1016/j.disc.2018.10.035.  Google Scholar

[33]

S. D. YangZ. A. Yao and C. A. Zhao, The weight distributions of two classes of $p$-ary cyclic codes with few weights, Finite Fields and Their Applications, 44 (2017), 76-91.  doi: 10.1016/j.ffa.2016.11.004.  Google Scholar

[34]

S. D. YangZ. A. Yao and C. A. Zhao, The weight enumerator of the duals of a class of cyclic codes with three zeros, Applicable Algebra in Engineering, Communication and Computing, 26 (2015), 347-367.  doi: 10.1007/s00200-015-0255-6.  Google Scholar

[35]

S. D. YangX. L. Kong and C. M. Tang, A construction of linear codes and their complete weight enumerators, Finite Fields and Their Applications, 48 (2017), 196-226.  doi: 10.1016/j.ffa.2017.08.001.  Google Scholar

[36]

S. D. Yang and Z. A. Yao, Complete weight enumerators of a class of linear codes, Discrete Mathematics, 340 (2017), 729-739.  doi: 10.1016/j.disc.2016.11.029.  Google Scholar

[37]

J. Yuan and C. S. Ding, Secret sharing schemes from three classes of linear codes, IEEE Transactions on Information Theory, 52 (2006), 206-212.  doi: 10.1109/TIT.2005.860412.  Google Scholar

show all references

References:
[1]

J. AhnD. Ka and C. J. Li, Complete weight enumerators of a class of linear codes, Designs, Codes and Cryptography, 83 (2017), 83-99.  doi: 10.1007/s10623-016-0205-8.  Google Scholar

[2]

S. BaeC. J. Li and Q. Yue, On the complete weight enumerators of some reducible cyclic codes, Discrete Mathematics, 338 (2015), 2275-2287.  doi: 10.1016/j.disc.2015.05.016.  Google Scholar

[3]

I. F. Blake and K. Kith, On the complete weight enumerator of Reed-Solomon codes, SIAM J. Discret. Math., 4 (1991), 164-171.  doi: 10.1137/0404016.  Google Scholar

[4]

R. S. Coulter, Explicit evaluations of some Weil sums, Acta Arithmetica, 83 (1998), 241-251.  doi: 10.4064/aa-83-3-241-251.  Google Scholar

[5]

R. S. Coulter, Further evaluations of Weil sums, Acta Arithmetica, 86 (1998), 217-226.  doi: 10.4064/aa-86-3-217-226.  Google Scholar

[6]

C. S. Ding, Linear codes from some 2-designs, IEEE Transactions on Information Theory, 61 (2015), 3265-3275.  doi: 10.1109/TIT.2015.2420118.  Google Scholar

[7]

C. S. DingT. HellesethT. Kløve and X. S. Wang, A generic construction of Cartesian authentication codes, IEEE Transactions on Information Theory, 53 (2007), 2229-2235.  doi: 10.1109/TIT.2007.896872.  Google Scholar

[8]

C. S. Ding and X. S. Wang, A coding theory construction of new systematic authentication codes, Theoretical Computer Science, 330 (2005), 81-99.  doi: 10.1016/j.tcs.2004.09.011.  Google Scholar

[9]

C. S. Ding and J. X. Yin, A construction of optimal constant composition codes, Designs, Codes and Cryptography, 40 (2006), 157-165.  doi: 10.1007/s10623-006-0004-8.  Google Scholar

[10]

K. L. Ding and C. S. Ding, Binary linear codes with three weights, IEEE Communications Letters, 18 (2014), 1879-1882.  doi: 10.1109/LCOMM.2014.2361516.  Google Scholar

[11]

K. Ding and C. S. Ding, A class of two-weight and three-weight codes and their applications in secret sharing, IEEE Transactions on Information Theory, 61 (2015), 5835-5842.  doi: 10.1109/TIT.2015.2473861.  Google Scholar

[12]

T. Helleseth and A. Kholosha, Monomial and quadratic bent functions over the finite fields of odd characteristic, IEEE Transactions on Information Theory, 52 (2006), 2018-2032.  doi: 10.1109/TIT.2006.872854.  Google Scholar

[13]

Z. L. Heng and Q. Yue, Complete weight distributions of two classes of cyclic codes, Cryptography and Communications, 9 (2017), 323-343.  doi: 10.1007/s12095-015-0177-y.  Google Scholar

[14]

K. Kith, Complete Weight Enumeration of Reed-Solomon Codes, Master's thesis, University of Waterloo in Waterloo, 1989. Google Scholar

[15]

X. L. Kong and S. D. Yang, Complete weight enumerators of a class of linear codes with two or three weights, Discrete Mathematics, 342 (2019), 3166-3176.  doi: 10.1016/j.disc.2019.06.025.  Google Scholar

[16]

C. J. LiS. BaeJ. AhnS. D. Yang and Z. A. Yao, Complete weight enumerators of some linear codes and their applications, Designs, Codes and Cryptography, 81 (2016), 153-168.  doi: 10.1007/s10623-015-0136-9.  Google Scholar

[17]

C. J. LiS. Bae and S. D. Yang, Some two-weight and three-weight linear codes, Advances in Mathematics of Communications, 13 (2019), 195-211.  doi: 10.3934/amc.2019013.  Google Scholar

[18]

C. J. LiQ. Yue and F. W. Fu, Complete weight enumerators of some cyclic codes, Designs, Codes and Cryptography, 80 (2016), 295-315.  doi: 10.1007/s10623-015-0091-5.  Google Scholar

[19]

C. J. LiQ. Yue and Z. L. Heng, Weight distributions of a class of cyclic codes from $ \mathbb{F}_l $-conjugates, Advances in Mathematics of Communications, 9 (2015), 341-352.  doi: 10.3934/amc.2015.9.341.  Google Scholar

[20]

R. Lidl and H. Niederreiter, Finite Fields, Encyclopedia of Mathematics and its Applications, 20. Addison-Wesley Publishing Company, Advanced Book Program, Reading, MA, 1983.  Google Scholar

[21]

H. B. LiuQ. Y. Liao and X. F. Wang, Complete weight enumerator for a class of linear codes from defining sets and their applications, Journal of Systems Science and Complexity, 32 (2019), 947-969.  doi: 10.1007/s11424-018-7414-3.  Google Scholar

[22]

F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes. I, North-Holland Mathematical Library, Vol. 16. North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977.  Google Scholar

[23]

A. Sharma and G. K. Bakshi, The weight distribution of some irreducible cyclic codes, Finite Fields and Their Applications, 18 (2012), 144-159.  doi: 10.1016/j.ffa.2011.07.002.  Google Scholar

[24]

M. J. Shi and Y. P. Zhang, Quasi-twisted codes with constacyclic constituent codes, Finite Fields and Their Applications, 39 (2016), 159-178.  doi: 10.1016/j.ffa.2016.01.010.  Google Scholar

[25]

M. J. ShiL. Q. QianL. SokN. Aydin and P. Solé, On constacyclic codes over $ \mathbb{Z}_4[u]/\langle u^2-1 \rangle$ and their Gray images, Finite Fields and Their Applications, 45 (2017), 86-95.  doi: 10.1016/j.ffa.2016.11.016.  Google Scholar

[26]

M. J. ShiR. S. WuL. Q. QianL. Sok and P. Solé, New classes of $p$-ary few weight codes, Bulletin of the Malaysian Mathematical Sciences Society, 42 (2019), 1393-1412.  doi: 10.1007/s40840-017-0553-1.  Google Scholar

[27]

L. SokM. J. Shi and P. Solé, Construction of optimal LCD codes over large finite fields, Finite Fields and Their Applications, 50 (2018), 138-153.  doi: 10.1016/j.ffa.2017.11.007.  Google Scholar

[28]

M. van der Vlugt, Hasse-Davenport curves, Gauss sums, and weight distributions of irreducible cyclic codes, Journal of Number Theory, 55 (1995), 145-159.  doi: 10.1006/jnth.1995.1133.  Google Scholar

[29]

G. Vega, The weight distribution for any irreducible cyclic code of length $p^m$, Applicable Algebra in Engineering, Communication and Computing, 29 (2018), 363-370.  doi: 10.1007/s00200-017-0347-6.  Google Scholar

[30]

Q. Y. WangF. LiK. L. Ding and D. D. Lin, Complete weight enumerators of two classes of linear codes, Discrete Mathematics, 340 (2017), 467-480.  doi: 10.1016/j.disc.2016.09.003.  Google Scholar

[31]

Y. S. WuQ. Yue and S. Q. Fan, Further factorization of $x^n -1$ over a finite field, Finite Fields and Their Applications, 54 (2018), 197-215.  doi: 10.1016/j.ffa.2018.07.007.  Google Scholar

[32]

Y. S. WuQ. YueX. M. Zhu and S. D. Yang, Weight enumerators of reducible cyclic codes and their dual codes, Discrete Mathematics, 342 (2019), 671-682.  doi: 10.1016/j.disc.2018.10.035.  Google Scholar

[33]

S. D. YangZ. A. Yao and C. A. Zhao, The weight distributions of two classes of $p$-ary cyclic codes with few weights, Finite Fields and Their Applications, 44 (2017), 76-91.  doi: 10.1016/j.ffa.2016.11.004.  Google Scholar

[34]

S. D. YangZ. A. Yao and C. A. Zhao, The weight enumerator of the duals of a class of cyclic codes with three zeros, Applicable Algebra in Engineering, Communication and Computing, 26 (2015), 347-367.  doi: 10.1007/s00200-015-0255-6.  Google Scholar

[35]

S. D. YangX. L. Kong and C. M. Tang, A construction of linear codes and their complete weight enumerators, Finite Fields and Their Applications, 48 (2017), 196-226.  doi: 10.1016/j.ffa.2017.08.001.  Google Scholar

[36]

S. D. Yang and Z. A. Yao, Complete weight enumerators of a class of linear codes, Discrete Mathematics, 340 (2017), 729-739.  doi: 10.1016/j.disc.2016.11.029.  Google Scholar

[37]

J. Yuan and C. S. Ding, Secret sharing schemes from three classes of linear codes, IEEE Transactions on Information Theory, 52 (2006), 206-212.  doi: 10.1109/TIT.2005.860412.  Google Scholar

Table 1.  Weight distribution of $ \mathcal{C} _{D_0} $ for odd $ e $
Weight $ w $ Frequency $ A_w $
$ 0 $ $ 1 $
$ (p-1) p^{e-2} $ $ p^{e-1} -1 $
$ (p-1) (p^{e-2}- p^{-2} \varepsilon_0 \eta_e(a) \sqrt{p^*} ) $ $ \dfrac{p-1}{2p} {\big( {{ q+ \varepsilon_0 \eta_e(a) \sqrt{p^*}}} \big) } $
$ (p-1) (p^{e-2}+ p^{-2} \varepsilon_0 \eta_e(a) \sqrt{p^*} ) $ $ \dfrac{p-1}{2p} {\big( {{ q- \varepsilon_0 \eta_e(a) \sqrt{p^*}}} \big) } $
Weight $ w $ Frequency $ A_w $
$ 0 $ $ 1 $
$ (p-1) p^{e-2} $ $ p^{e-1} -1 $
$ (p-1) (p^{e-2}- p^{-2} \varepsilon_0 \eta_e(a) \sqrt{p^*} ) $ $ \dfrac{p-1}{2p} {\big( {{ q+ \varepsilon_0 \eta_e(a) \sqrt{p^*}}} \big) } $
$ (p-1) (p^{e-2}+ p^{-2} \varepsilon_0 \eta_e(a) \sqrt{p^*} ) $ $ \dfrac{p-1}{2p} {\big( {{ q- \varepsilon_0 \eta_e(a) \sqrt{p^*}}} \big) } $
Table 2.  Weight distribution of $ \mathcal{C} _{D_0} $ for even $ e $
Weight $ w $ Frequency $ A_w $
$ 0 $ $ 1 $
$ (p-1) p^{e-2} $ $ p^{e-1} + (p-1)p^{-1} \varepsilon_0 \eta_e(a)-1 $
$ (p-1) (p^{e-2}+ p^{-1} \varepsilon_0 \eta_e(a) ) $ $ (p-1) {\big( {{p^{e-1}- p^{-1} \varepsilon_0 \eta_e(a)}} \big) } $
Weight $ w $ Frequency $ A_w $
$ 0 $ $ 1 $
$ (p-1) p^{e-2} $ $ p^{e-1} + (p-1)p^{-1} \varepsilon_0 \eta_e(a)-1 $
$ (p-1) (p^{e-2}+ p^{-1} \varepsilon_0 \eta_e(a) ) $ $ (p-1) {\big( {{p^{e-1}- p^{-1} \varepsilon_0 \eta_e(a)}} \big) } $
Table 3.  Weight distribution of $ \mathcal{C} _{D_c} $ for odd $ e $ and $ c \neq 0 $
Weight $ w $ Frequency $ A_w $
$ 0 $ $ 1 $
$ (p-1) p^{e-2} $ $ p^{e-1} -1 $
$ n_c-p^{e-2} + p^{-2}\varepsilon_0 \eta_e(a) \sqrt{p^*}\eta(-c) $ $ \frac{p-1}{2} n_c $
$ n_c-p^{e-2} - p^{-2}\varepsilon_0 \eta_e(a) \sqrt{p^*}\eta(-c) $ $ \frac{p-1}{2}{\big( {{p^{e-1} - p^{-1}\varepsilon_0 \eta_e(a) \sqrt{p^*}\eta(-c) }} \big) } $
Weight $ w $ Frequency $ A_w $
$ 0 $ $ 1 $
$ (p-1) p^{e-2} $ $ p^{e-1} -1 $
$ n_c-p^{e-2} + p^{-2}\varepsilon_0 \eta_e(a) \sqrt{p^*}\eta(-c) $ $ \frac{p-1}{2} n_c $
$ n_c-p^{e-2} - p^{-2}\varepsilon_0 \eta_e(a) \sqrt{p^*}\eta(-c) $ $ \frac{p-1}{2}{\big( {{p^{e-1} - p^{-1}\varepsilon_0 \eta_e(a) \sqrt{p^*}\eta(-c) }} \big) } $
Table 4.  Weight distribution of $ \mathcal{C} _{D_c} $ for even $ e $ and $ c\neq 0 $
Weight $ w $ Frequency $ A_w $
$ 0 $ $ 1 $
$ (p-1) p^{e-2} $ $ \frac{p+1}{2}p^{e-1}+\frac{p-1}{2} p^{-1}\varepsilon_0 \eta_e(a)-1 $
$ (p-1)p^{e-2} -2 p^{-1}\varepsilon_0 \eta_e(a) $ $ \frac{p-1}{2}n_c $
Weight $ w $ Frequency $ A_w $
$ 0 $ $ 1 $
$ (p-1) p^{e-2} $ $ \frac{p+1}{2}p^{e-1}+\frac{p-1}{2} p^{-1}\varepsilon_0 \eta_e(a)-1 $
$ (p-1)p^{e-2} -2 p^{-1}\varepsilon_0 \eta_e(a) $ $ \frac{p-1}{2}n_c $
[1]

Jong Yoon Hyun, Yoonjin Lee, Yansheng Wu. Connection of $ p $-ary $ t $-weight linear codes to Ramanujan Cayley graphs with $ t+1 $ eigenvalues. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020133

[2]

Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206

[3]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[4]

Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311

[5]

Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203

[6]

Alexander A. Davydov, Massimo Giulietti, Stefano Marcugini, Fernanda Pambianco. Linear nonbinary covering codes and saturating sets in projective spaces. Advances in Mathematics of Communications, 2011, 5 (1) : 119-147. doi: 10.3934/amc.2011.5.119

[7]

W. Cary Huffman. On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes. Advances in Mathematics of Communications, 2013, 7 (3) : 349-378. doi: 10.3934/amc.2013.7.349

[8]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[9]

Arunima Bhattacharya, Micah Warren. $ C^{2, \alpha} $ estimates for solutions to almost Linear elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021024

[10]

Misha Bialy, Andrey E. Mironov. Rich quasi-linear system for integrable geodesic flows on 2-torus. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 81-90. doi: 10.3934/dcds.2011.29.81

[11]

Fumihiko Nakamura. Asymptotic behavior of non-expanding piecewise linear maps in the presence of random noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2457-2473. doi: 10.3934/dcdsb.2018055

[12]

Christophe Zhang. Internal rapid stabilization of a 1-D linear transport equation with a scalar feedback. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021006

[13]

Hirofumi Notsu, Masato Kimura. Symmetry and positive definiteness of the tensor-valued spring constant derived from P1-FEM for the equations of linear elasticity. Networks & Heterogeneous Media, 2014, 9 (4) : 617-634. doi: 10.3934/nhm.2014.9.617

[14]

Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021014

2019 Impact Factor: 0.734

Metrics

  • PDF downloads (161)
  • HTML views (604)
  • Cited by (0)

Other articles
by authors

[Back to Top]