[1]
|
J. Ahn, D. Ka and C. J. Li, Complete weight enumerators of a class of linear codes, Designs, Codes and Cryptography, 83 (2017), 83-99.
doi: 10.1007/s10623-016-0205-8.
|
[2]
|
S. Bae, C. J. Li and Q. Yue, On the complete weight enumerators of some reducible cyclic codes, Discrete Mathematics, 338 (2015), 2275-2287.
doi: 10.1016/j.disc.2015.05.016.
|
[3]
|
I. F. Blake and K. Kith, On the complete weight enumerator of Reed-Solomon codes, SIAM J. Discret. Math., 4 (1991), 164-171.
doi: 10.1137/0404016.
|
[4]
|
R. S. Coulter, Explicit evaluations of some Weil sums, Acta Arithmetica, 83 (1998), 241-251.
doi: 10.4064/aa-83-3-241-251.
|
[5]
|
R. S. Coulter, Further evaluations of Weil sums, Acta Arithmetica, 86 (1998), 217-226.
doi: 10.4064/aa-86-3-217-226.
|
[6]
|
C. S. Ding, Linear codes from some 2-designs, IEEE Transactions on Information Theory, 61 (2015), 3265-3275.
doi: 10.1109/TIT.2015.2420118.
|
[7]
|
C. S. Ding, T. Helleseth, T. Kløve and X. S. Wang, A generic construction of Cartesian authentication codes, IEEE Transactions on Information Theory, 53 (2007), 2229-2235.
doi: 10.1109/TIT.2007.896872.
|
[8]
|
C. S. Ding and X. S. Wang, A coding theory construction of new systematic authentication codes, Theoretical Computer Science, 330 (2005), 81-99.
doi: 10.1016/j.tcs.2004.09.011.
|
[9]
|
C. S. Ding and J. X. Yin, A construction of optimal constant composition codes, Designs, Codes and Cryptography, 40 (2006), 157-165.
doi: 10.1007/s10623-006-0004-8.
|
[10]
|
K. L. Ding and C. S. Ding, Binary linear codes with three weights, IEEE Communications Letters, 18 (2014), 1879-1882.
doi: 10.1109/LCOMM.2014.2361516.
|
[11]
|
K. Ding and C. S. Ding, A class of two-weight and three-weight codes and their applications in secret sharing, IEEE Transactions on Information Theory, 61 (2015), 5835-5842.
doi: 10.1109/TIT.2015.2473861.
|
[12]
|
T. Helleseth and A. Kholosha, Monomial and quadratic bent functions over the finite fields of odd characteristic, IEEE Transactions on Information Theory, 52 (2006), 2018-2032.
doi: 10.1109/TIT.2006.872854.
|
[13]
|
Z. L. Heng and Q. Yue, Complete weight distributions of two classes of cyclic codes, Cryptography and Communications, 9 (2017), 323-343.
doi: 10.1007/s12095-015-0177-y.
|
[14]
|
K. Kith, Complete Weight Enumeration of Reed-Solomon Codes, Master's thesis, University of Waterloo in Waterloo, 1989.
|
[15]
|
X. L. Kong and S. D. Yang, Complete weight enumerators of a class of linear codes with two or three weights, Discrete Mathematics, 342 (2019), 3166-3176.
doi: 10.1016/j.disc.2019.06.025.
|
[16]
|
C. J. Li, S. Bae, J. Ahn, S. D. Yang and Z. A. Yao, Complete weight enumerators of some linear codes and their applications, Designs, Codes and Cryptography, 81 (2016), 153-168.
doi: 10.1007/s10623-015-0136-9.
|
[17]
|
C. J. Li, S. Bae and S. D. Yang, Some two-weight and three-weight linear codes, Advances in Mathematics of Communications, 13 (2019), 195-211.
doi: 10.3934/amc.2019013.
|
[18]
|
C. J. Li, Q. Yue and F. W. Fu, Complete weight enumerators of some cyclic codes, Designs, Codes and Cryptography, 80 (2016), 295-315.
doi: 10.1007/s10623-015-0091-5.
|
[19]
|
C. J. Li, Q. Yue and Z. L. Heng, Weight distributions of a class of cyclic codes from $ \mathbb{F}_l $-conjugates, Advances in Mathematics of Communications, 9 (2015), 341-352.
doi: 10.3934/amc.2015.9.341.
|
[20]
|
R. Lidl and H. Niederreiter, Finite Fields, Encyclopedia of Mathematics and its Applications, 20. Addison-Wesley Publishing Company, Advanced Book Program, Reading, MA, 1983.
|
[21]
|
H. B. Liu, Q. Y. Liao and X. F. Wang, Complete weight enumerator for a class of linear codes from defining sets and their applications, Journal of Systems Science and Complexity, 32 (2019), 947-969.
doi: 10.1007/s11424-018-7414-3.
|
[22]
|
F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes. I, North-Holland Mathematical Library, Vol. 16. North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977.
|
[23]
|
A. Sharma and G. K. Bakshi, The weight distribution of some irreducible cyclic codes, Finite Fields and Their Applications, 18 (2012), 144-159.
doi: 10.1016/j.ffa.2011.07.002.
|
[24]
|
M. J. Shi and Y. P. Zhang, Quasi-twisted codes with constacyclic constituent codes, Finite Fields and Their Applications, 39 (2016), 159-178.
doi: 10.1016/j.ffa.2016.01.010.
|
[25]
|
M. J. Shi, L. Q. Qian, L. Sok, N. Aydin and P. Solé, On constacyclic codes over $ \mathbb{Z}_4[u]/\langle u^2-1 \rangle$ and their Gray images, Finite Fields and Their Applications, 45 (2017), 86-95.
doi: 10.1016/j.ffa.2016.11.016.
|
[26]
|
M. J. Shi, R. S. Wu, L. Q. Qian, L. Sok and P. Solé, New classes of $p$-ary few weight codes, Bulletin of the Malaysian Mathematical Sciences Society, 42 (2019), 1393-1412.
doi: 10.1007/s40840-017-0553-1.
|
[27]
|
L. Sok, M. J. Shi and P. Solé, Construction of optimal LCD codes over large finite fields, Finite Fields and Their Applications, 50 (2018), 138-153.
doi: 10.1016/j.ffa.2017.11.007.
|
[28]
|
M. van der Vlugt, Hasse-Davenport curves, Gauss sums, and weight distributions of irreducible cyclic codes, Journal of Number Theory, 55 (1995), 145-159.
doi: 10.1006/jnth.1995.1133.
|
[29]
|
G. Vega, The weight distribution for any irreducible cyclic code of length $p^m$, Applicable Algebra in Engineering, Communication and Computing, 29 (2018), 363-370.
doi: 10.1007/s00200-017-0347-6.
|
[30]
|
Q. Y. Wang, F. Li, K. L. Ding and D. D. Lin, Complete weight enumerators of two classes of linear codes, Discrete Mathematics, 340 (2017), 467-480.
doi: 10.1016/j.disc.2016.09.003.
|
[31]
|
Y. S. Wu, Q. Yue and S. Q. Fan, Further factorization of $x^n -1$ over a finite field, Finite Fields and Their Applications, 54 (2018), 197-215.
doi: 10.1016/j.ffa.2018.07.007.
|
[32]
|
Y. S. Wu, Q. Yue, X. M. Zhu and S. D. Yang, Weight enumerators of reducible cyclic codes and their dual codes, Discrete Mathematics, 342 (2019), 671-682.
doi: 10.1016/j.disc.2018.10.035.
|
[33]
|
S. D. Yang, Z. A. Yao and C. A. Zhao, The weight distributions of two classes of $p$-ary cyclic codes with few weights, Finite Fields and Their Applications, 44 (2017), 76-91.
doi: 10.1016/j.ffa.2016.11.004.
|
[34]
|
S. D. Yang, Z. A. Yao and C. A. Zhao, The weight enumerator of the duals of a class of cyclic codes with three zeros, Applicable Algebra in Engineering, Communication and Computing, 26 (2015), 347-367.
doi: 10.1007/s00200-015-0255-6.
|
[35]
|
S. D. Yang, X. L. Kong and C. M. Tang, A construction of linear codes and their complete weight enumerators, Finite Fields and Their Applications, 48 (2017), 196-226.
doi: 10.1016/j.ffa.2017.08.001.
|
[36]
|
S. D. Yang and Z. A. Yao, Complete weight enumerators of a class of linear codes, Discrete Mathematics, 340 (2017), 729-739.
doi: 10.1016/j.disc.2016.11.029.
|
[37]
|
J. Yuan and C. S. Ding, Secret sharing schemes from three classes of linear codes, IEEE Transactions on Information Theory, 52 (2006), 206-212.
doi: 10.1109/TIT.2005.860412.
|