[1]
|
L. Baumert and J. Mykkeltveit, Weight distributions of some irreducible cyclic codes, DSN Progr. Rep., 16 (1973), 128-131.
|
[2]
|
B. Berndt, R. Evans and K. Williams, Gauss and Jacobi Sums, New York, John Wiley & Sons Company, 1997.
|
[3]
|
H. Cohen, A Course in Computational Algebraic Number Theory, Graduate Texts in Mathematics, 138. Springer-Verlag, Berlin, 1993.
doi: 10.1007/978-3-662-02945-9.
|
[4]
|
C. S. Ding and J. Yang, Hamming weights in irreducible cyclic codes, Discrete Math., 313 (2013), 434-446.
doi: 10.1016/j.disc.2012.11.009.
|
[5]
|
C. S. Ding, Y. Liu, C. L. Ma and L. W. Zeng, The weight distributions of the duals of cyclic codes with two zeros, IEEE Trans. Inform. Theory, 57 (2011), 8000-8006.
doi: 10.1109/TIT.2011.2165314.
|
[6]
|
C. S. Ding, C. L. Li, N. Li and Z. C. Zhou, Three-weight cyclic codes and their weight distributions, Discrete Math., 339 (2016), 415-427.
doi: 10.1016/j.disc.2015.09.001.
|
[7]
|
T. Feng and Q. Xiang, Strongly regular graphs from unions of cyclotomic classes, Journal of Combinatorial Theory Series B, 102 (2012), 982-995.
doi: 10.1016/j.jctb.2011.10.006.
|
[8]
|
Z. L. Heng and Q. Yue, A class of binary linear codes with at most three weights, IEEE Commun. Lett., 19 (2015), 1488-1491.
doi: 10.1109/LCOMM.2015.2455032.
|
[9]
|
Z. L. Heng and Q. Yue, Two classes of two-weight linear codes, Finite Fields Appl., 38 (2016), 72-92.
doi: 10.1016/j.ffa.2015.12.002.
|
[10]
|
Z. L. Heng and Q. Yue, Evaluation of the Hamming weights of a class of linear codes based on Gauss sums, Des. Codes Cryptogr., 83 (2017), 307-326.
doi: 10.1007/s10623-016-0222-7.
|
[11]
|
L. Q. Hu, Q. Yue and M. H. Wang, The linear complexity of Whiteman's generalize cyclotomic sequences of period $p^{m+1}q^{n+1}$, IEEE Trans. Inform. Theory, 58 (2012), 5534-5543.
doi: 10.1109/TIT.2012.2196254.
|
[12]
|
P. Langevin, Caluls de certaines sommes de Gauss, J. Number theory, 63 (1997), 59-64.
doi: 10.1006/jnth.1997.2078.
|
[13]
|
C. J. Li and Q. Yue, The Walsh transform of a class of monomial functions and cyclic codes, Cryptogr. Commun., 7 (2015), 217-228.
doi: 10.1007/s12095-014-0109-2.
|
[14]
|
C. J. Li, Q. Yue and F. W. Li, Weight distributions of cyclic codes with respect to pairwise coprime order elements, Finite Fields Appl., 28 (2014), 94-114.
doi: 10.1016/j.ffa.2014.01.009.
|
[15]
|
F. W. Li, Q. Yue and F. M. Liu, The weight distribution of a class of cyclic codes containing a subclass with optimal parameters, Finite Fields Appl., 45 (2017), 183-202.
doi: 10.1016/j.ffa.2016.12.004.
|
[16]
|
R. Lidl and H. Niederreiter, Finite Fields, Encyclopedia of Mathematics and its Applications, 20. Cambridge University Press, Cambridge, 1997.
|
[17]
|
Y. W. Liu and Z. H. Liu, On some classes of codes with a few weights, Adv. Math. Commun., 12 (2018), 415-428.
doi: 10.3934/amc.2018025.
|
[18]
|
J. Q. Luo and K. Q. Feng, On the weight distribution of two classes of cyclic codes, IEEE Trans. Inf. Theory, 54 (2008), 5332-5344.
doi: 10.1109/TIT.2008.2006424.
|
[19]
|
G. McGuire, On three weights in cyclic codes with two zeros, Finite Fields Appl., 10 (2004), 97-104.
doi: 10.1016/S1071-5797(03)00045-5.
|
[20]
|
G. Myerson, Period polynomials and Gauss sums for finite fields, Acta Arith., 39 (1981), 251-264.
doi: 10.4064/aa-39-3-251-264.
|
[21]
|
T. Storer, Cyclotomy and Difference Sets, Lectures in Advanced Mathematics, No. 2 Markham Publishing Co., Chicago, Ill. 1967.
|
[22]
|
Q. Y. Wang, K. L. Ding, D. D. Lin and R. Xue, A kind of three-weight linear codes, Cryptogr. Commun., 9 (2017), 315-322.
doi: 10.1007/s12095-015-0180-3.
|
[23]
|
Q. Y. Wang, K. L. Ding and R. Xue, Binary linear codes with two weights, IEEE Commun. Lett., 19 (2015), 1097-1100.
doi: 10.1109/LCOMM.2015.2431253.
|
[24]
|
X. Q. Wang, D. B. Zheng, L. Hu and X. Y. Zeng, The weight distributions of two classes of binary cyclic codes, Finite Fields Appl., 34 (2015), 192-207.
doi: 10.1016/j.ffa.2015.01.012.
|
[25]
|
M. S. Xiong, The weight distributions of a class of cyclic codes, Finite Fields Appl., 18 (2012), 933-945.
doi: 10.1016/j.ffa.2012.06.001.
|
[26]
|
J. Yang and L. L. Xia, Complete solving of explicit evaluation of Gauss sums in the index 2 case, Sci. China Math., 53 (2010), 2525-2542.
doi: 10.1007/s11425-010-3155-z.
|
[27]
|
J. Yang, M. S. Xiong, C. S. Ding and J. Q. Luo, Weight distribution of a class of cyclic codes with arbitrary number of zeros, IEEE Trans. Inform. Theory, 59 (2013), 5985-5993.
doi: 10.1109/TIT.2013.2266731.
|
[28]
|
S. D. Yang, X. L. Kong and C. M. Tang, A construction of linear codes and their complete weight enumerators, Finite Fields Appl., 48 (2017), 196-226.
doi: 10.1016/j.ffa.2017.08.001.
|
[29]
|
S. D. Yang and Z.-A. Yao, Complete weight enumerators of a class of linear codes, Discrete Math., 340 (2017), 729-739.
doi: 10.1016/j.disc.2016.11.029.
|
[30]
|
Z. C. Zhou and C. S. Ding, A class of three-weight cyclic codes, Finite Fields Appli., 25 (2014), 79-93.
doi: 10.1016/j.ffa.2013.08.005.
|
[31]
|
Z. C. Zhou, A. X. Zhang and C. S. Ding, The weight enumerator of three families of cyclic codes, IEEE Trans. Inf. Theory, 59 (2013), 6002-6009.
doi: 10.1109/TIT.2013.2262095.
|