February  2021, 15(1): 191-206. doi: 10.3934/amc.2020052

Properties of sets of Subspaces with Constant Intersection Dimension

Department of Mathematics, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium

* Corresponding author: Lisa Hernandez Lucas

Received  April 2019 Revised  October 2019 Published  January 2020

A $ (k,k-t) $-SCID (set of Subspaces with Constant Intersection Dimension) is a set of $ k $-dimensional vector spaces that have pairwise intersections of dimension $ k-t $. Let $ \mathcal{C} = \{\pi_1,\ldots,\pi_n\} $ be a $ (k,k-t) $-SCID. Define $ S: = \langle \pi_1, \ldots, \pi_n \rangle $ and $ I: = \langle \pi_i \cap \pi_j \mid 1 \leq i < j \leq n \rangle $. We establish several upper bounds for $ \dim S + \dim I $ in different situations. We give a spectrum result under certain conditions for $ n $, giving examples of $ (k,k-t) $-SCIDs reaching a large interval of values for $ \dim S + \dim I $.

Citation: Lisa Hernandez Lucas. Properties of sets of Subspaces with Constant Intersection Dimension. Advances in Mathematics of Communications, 2021, 15 (1) : 191-206. doi: 10.3934/amc.2020052
References:
[1]

R. AhlswedeN. CaiS.-Y. R. Li and R. W. Yeung, Network information flow, IEEE Trans. Inform. Theory, 46 (2000), 1204-1216.  doi: 10.1109/18.850663.  Google Scholar

[2]

R. D. BarrolletaL. StormeE. Suárez-Canedo and P. Vandendriessche, On primitive constant dimension codes and a geometrical sunflower bound, Adv. Math. Commun., 11 (2017), 757-765.  doi: 10.3934/amc.2017055.  Google Scholar

[3]

A. Beutelspacher, Partial spreads in finite projective spaces and partial designs, Math. Zeit., 145 (1975), 211-229.  doi: 10.1007/BF01215286.  Google Scholar

[4]

A. Beutelspacher and J. Ueberberg, A characteristic property of geometric $t$-spreads in finite projective spaces, Europ. J. Combin., 12 (1991), 277-281.  doi: 10.1016/S0195-6698(13)80110-2.  Google Scholar

[5]

J. Eisfeld, On sets of $n$-dimensional subspaces of projective spaces intersecting mutually in an $(n-2)$-dimensional subspace, Discrete Math., 255 (2002), 81-85.  doi: 10.1016/S0012-365X(01)00390-9.  Google Scholar

[6]

T. Etzion, Problems on $q$-analogs in coding theory, Preprint, arXiv: 1305.6126. Google Scholar

[7]

T. Etzion and N. Raviv, Equidistant codes in the Grassmannian, Discrete Appl. Math., 186 (2015), 87-97.  doi: 10.1016/j.dam.2015.01.024.  Google Scholar

[8]

E. Gorla and A. Ravagnani, Equidistant subspace codes, Linear Algebra Appl., 490 (2016), 48-65.   Google Scholar

[9]

T. HoM. MédardR. KoetterD. R. KargerM. EffrosJ. Shi and B. Leong, A random linear network coding approach to multicast, IEEE Trans. Inform. Theory, 52 (2006), 4413-4430.  doi: 10.1109/TIT.2006.881746.  Google Scholar

[10]

R. Kötter and F. R. Kschischang, Coding for errors and erasures in random network coding, IEEE Trans. Inform. Theory, 54 (2008), 3579-3591.  doi: 10.1109/TIT.2008.926449.  Google Scholar

[11]

M. Lavrauw and G. Van de Voorde, Field reduction and linear sets in finite geometry, Topics in finite fields, Contemp. Math., Amer. Math. Soc., Providence, RI, 632 (2015), 271-293.  doi: 10.1090/conm/632/12633.  Google Scholar

[12]

S.-Y. R. LiR. W. Yeung and N. Cai, Linear network coding, IEEE Trans. Inform. Theory, 49 (2003), 371-381.  doi: 10.1109/TIT.2002.807285.  Google Scholar

[13]

F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes. I, North-Holland Mathematical Library, Vol. 16. North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977.  Google Scholar

[14]

K. Metsch and L. Storme, Partial $t$-spreads in PG$(2t+1, q)$, Des. Codes Cryptogr., 18 (1999), 199-216.  doi: 10.1023/A:1008305824113.  Google Scholar

[15]

O. Polverino, Linear sets in finite projective spaces, Discrete Math., 310 (2010), 3096-3107.  doi: 10.1016/j.disc.2009.04.007.  Google Scholar

[16]

B. Segre, Teoria di Galois, fibrazioni proiettive e geometrie non desarguesiane, Ann. Mat. Pura Appl., 64 (1964), 1-76.  doi: 10.1007/BF02410047.  Google Scholar

[17]

C. E. Shannon, A mathematical theory of communication, Bell System Tech. J., 27 (1948), 379–423,623–656. doi: 10.1002/j.1538-7305.1948.tb01338.x.  Google Scholar

[18]

A. Weil, Adeles and Algebraic Groups, Progress in Mathematics, 23. Birkhäuser, Boston, Mass., 1982.  Google Scholar

show all references

References:
[1]

R. AhlswedeN. CaiS.-Y. R. Li and R. W. Yeung, Network information flow, IEEE Trans. Inform. Theory, 46 (2000), 1204-1216.  doi: 10.1109/18.850663.  Google Scholar

[2]

R. D. BarrolletaL. StormeE. Suárez-Canedo and P. Vandendriessche, On primitive constant dimension codes and a geometrical sunflower bound, Adv. Math. Commun., 11 (2017), 757-765.  doi: 10.3934/amc.2017055.  Google Scholar

[3]

A. Beutelspacher, Partial spreads in finite projective spaces and partial designs, Math. Zeit., 145 (1975), 211-229.  doi: 10.1007/BF01215286.  Google Scholar

[4]

A. Beutelspacher and J. Ueberberg, A characteristic property of geometric $t$-spreads in finite projective spaces, Europ. J. Combin., 12 (1991), 277-281.  doi: 10.1016/S0195-6698(13)80110-2.  Google Scholar

[5]

J. Eisfeld, On sets of $n$-dimensional subspaces of projective spaces intersecting mutually in an $(n-2)$-dimensional subspace, Discrete Math., 255 (2002), 81-85.  doi: 10.1016/S0012-365X(01)00390-9.  Google Scholar

[6]

T. Etzion, Problems on $q$-analogs in coding theory, Preprint, arXiv: 1305.6126. Google Scholar

[7]

T. Etzion and N. Raviv, Equidistant codes in the Grassmannian, Discrete Appl. Math., 186 (2015), 87-97.  doi: 10.1016/j.dam.2015.01.024.  Google Scholar

[8]

E. Gorla and A. Ravagnani, Equidistant subspace codes, Linear Algebra Appl., 490 (2016), 48-65.   Google Scholar

[9]

T. HoM. MédardR. KoetterD. R. KargerM. EffrosJ. Shi and B. Leong, A random linear network coding approach to multicast, IEEE Trans. Inform. Theory, 52 (2006), 4413-4430.  doi: 10.1109/TIT.2006.881746.  Google Scholar

[10]

R. Kötter and F. R. Kschischang, Coding for errors and erasures in random network coding, IEEE Trans. Inform. Theory, 54 (2008), 3579-3591.  doi: 10.1109/TIT.2008.926449.  Google Scholar

[11]

M. Lavrauw and G. Van de Voorde, Field reduction and linear sets in finite geometry, Topics in finite fields, Contemp. Math., Amer. Math. Soc., Providence, RI, 632 (2015), 271-293.  doi: 10.1090/conm/632/12633.  Google Scholar

[12]

S.-Y. R. LiR. W. Yeung and N. Cai, Linear network coding, IEEE Trans. Inform. Theory, 49 (2003), 371-381.  doi: 10.1109/TIT.2002.807285.  Google Scholar

[13]

F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes. I, North-Holland Mathematical Library, Vol. 16. North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977.  Google Scholar

[14]

K. Metsch and L. Storme, Partial $t$-spreads in PG$(2t+1, q)$, Des. Codes Cryptogr., 18 (1999), 199-216.  doi: 10.1023/A:1008305824113.  Google Scholar

[15]

O. Polverino, Linear sets in finite projective spaces, Discrete Math., 310 (2010), 3096-3107.  doi: 10.1016/j.disc.2009.04.007.  Google Scholar

[16]

B. Segre, Teoria di Galois, fibrazioni proiettive e geometrie non desarguesiane, Ann. Mat. Pura Appl., 64 (1964), 1-76.  doi: 10.1007/BF02410047.  Google Scholar

[17]

C. E. Shannon, A mathematical theory of communication, Bell System Tech. J., 27 (1948), 379–423,623–656. doi: 10.1002/j.1538-7305.1948.tb01338.x.  Google Scholar

[18]

A. Weil, Adeles and Algebraic Groups, Progress in Mathematics, 23. Birkhäuser, Boston, Mass., 1982.  Google Scholar

Table 1.  Summary of the best bounds found for $\dim S +\dim I$, for different values of $n$, $k$ and $t$
Condition Upper bound $\dim S + \dim I$ Sharp? Theorem
$(k-t)(n-1) \leq k$ $nk$ yes Theorem 2.1 & 2.2
$k\geq 2t$, $n\geq 3$,$(k,n)\neq(2t,3)$ $2k+2(n-2)t-(n-3)$ unknown Theorem 2.5
$k <2t$ $(k-t)(n-1) > k$ $nk$ no Theorem 2.1 & 2.2
Condition Upper bound $\dim S + \dim I$ Sharp? Theorem
$(k-t)(n-1) \leq k$ $nk$ yes Theorem 2.1 & 2.2
$k\geq 2t$, $n\geq 3$,$(k,n)\neq(2t,3)$ $2k+2(n-2)t-(n-3)$ unknown Theorem 2.5
$k <2t$ $(k-t)(n-1) > k$ $nk$ no Theorem 2.1 & 2.2
[1]

Arseny Egorov. Morse coding for a Fuchsian group of finite covolume. Journal of Modern Dynamics, 2009, 3 (4) : 637-646. doi: 10.3934/jmd.2009.3.637

[2]

Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311

[3]

W. Cary Huffman. On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes. Advances in Mathematics of Communications, 2013, 7 (3) : 349-378. doi: 10.3934/amc.2013.7.349

[4]

Alexander A. Davydov, Massimo Giulietti, Stefano Marcugini, Fernanda Pambianco. Linear nonbinary covering codes and saturating sets in projective spaces. Advances in Mathematics of Communications, 2011, 5 (1) : 119-147. doi: 10.3934/amc.2011.5.119

[5]

Yves Dumont, Frederic Chiroleu. Vector control for the Chikungunya disease. Mathematical Biosciences & Engineering, 2010, 7 (2) : 313-345. doi: 10.3934/mbe.2010.7.313

[6]

A. K. Misra, Anupama Sharma, Jia Li. A mathematical model for control of vector borne diseases through media campaigns. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1909-1927. doi: 10.3934/dcdsb.2013.18.1909

[7]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1717-1746. doi: 10.3934/dcdss.2020451

[8]

Seung-Yeal Ha, Shi Jin. Local sensitivity analysis for the Cucker-Smale model with random inputs. Kinetic & Related Models, 2018, 11 (4) : 859-889. doi: 10.3934/krm.2018034

[9]

Alexandre B. Simas, Fábio J. Valentim. $W$-Sobolev spaces: Higher order and regularity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 597-607. doi: 10.3934/cpaa.2015.14.597

[10]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[11]

Jingni Guo, Junxiang Xu, Zhenggang He, Wei Liao. Research on cascading failure modes and attack strategies of multimodal transport network. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2020159

[12]

Andrey Kovtanyuk, Alexander Chebotarev, Nikolai Botkin, Varvara Turova, Irina Sidorenko, Renée Lampe. Modeling the pressure distribution in a spatially averaged cerebral capillary network. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021016

[13]

Xue-Ping Luo, Yi-Bin Xiao, Wei Li. Strict feasibility of variational inclusion problems in reflexive Banach spaces. Journal of Industrial & Management Optimization, 2020, 16 (5) : 2495-2502. doi: 10.3934/jimo.2019065

[14]

Jérôme Ducoat, Frédérique Oggier. On skew polynomial codes and lattices from quotients of cyclic division algebras. Advances in Mathematics of Communications, 2016, 10 (1) : 79-94. doi: 10.3934/amc.2016.10.79

[15]

Fumihiko Nakamura. Asymptotic behavior of non-expanding piecewise linear maps in the presence of random noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2457-2473. doi: 10.3934/dcdsb.2018055

[16]

Reza Lotfi, Yahia Zare Mehrjerdi, Mir Saman Pishvaee, Ahmad Sadeghieh, Gerhard-Wilhelm Weber. A robust optimization model for sustainable and resilient closed-loop supply chain network design considering conditional value at risk. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 221-253. doi: 10.3934/naco.2020023

[17]

John Leventides, Costas Poulios, Georgios Alkis Tsiatsios, Maria Livada, Stavros Tsipras, Konstantinos Lefcaditis, Panagiota Sargenti, Aleka Sargenti. Systems theory and analysis of the implementation of non pharmaceutical policies for the mitigation of the COVID-19 pandemic. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021004

[18]

Hakan Özadam, Ferruh Özbudak. A note on negacyclic and cyclic codes of length $p^s$ over a finite field of characteristic $p$. Advances in Mathematics of Communications, 2009, 3 (3) : 265-271. doi: 10.3934/amc.2009.3.265

[19]

Ademir Fernando Pazoto, Lionel Rosier. Uniform stabilization in weighted Sobolev spaces for the KdV equation posed on the half-line. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1511-1535. doi: 10.3934/dcdsb.2010.14.1511

[20]

Lucas C. F. Ferreira, Jhean E. Pérez-López, Élder J. Villamizar-Roa. On the product in Besov-Lorentz-Morrey spaces and existence of solutions for the stationary Boussinesq equations. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2423-2439. doi: 10.3934/cpaa.2018115

2019 Impact Factor: 0.734

Metrics

  • PDF downloads (152)
  • HTML views (489)
  • Cited by (0)

Other articles
by authors

[Back to Top]