-
Previous Article
Verifying solutions to LWE with implications for concrete security
- AMC Home
- This Issue
-
Next Article
Construction of minimal linear codes from multi-variable functions
Gowers $ U_2 $ norm as a measure of nonlinearity for Boolean functions and their generalizations
1. | Department of Computer Science and Engineering, Indian Institute of Technology Roorkee, Roorkee 247667, India |
2. | Department of Computer Science, Electrical Engineering and Mathematical Sciences, Western Norway University of Applied Sciences, 5020 Bergen, Norway |
3. | Department of Applied Mathematics, Naval Postgraduate School, Monterey, CA 93943, USA |
In this paper, we investigate the Gowers $ U_2 $ norm for generalized Boolean functions, and $ \mathbb{Z} $-bent functions. The Gowers $ U_2 $ norm of a function is a measure of its resistance to affine approximation. Although nonlinearity serves the same purpose for the classical Boolean functions, it does not extend easily to generalized Boolean functions. We first provide a framework for employing the Gowers $ U_2 $ norm in the context of generalized Boolean functions with cryptographic significance, in particular, we give a recurrence rule for the Gowers $ U_2 $ norms, and an evaluation of the Gowers $ U_2 $ norm of functions that are affine over spreads. We also give an introduction to $ \mathbb{Z} $-bent functions, as proposed by Dobbertin and Leander [
References:
[1] |
L. Budaghyan, Construction and Analysis of Cryptographic Functions, Springer, Cham, 2014.
doi: 10.1007/978-3-319-12991-4. |
[2] |
C. Carlet, Boolean functions for cryptography and error correcting codes, Boolean Methods and Models, Cambridge Univ. Press, Cambridge, (2010), 257–397. Google Scholar |
[3] |
C. Carlet and S. Mesnager,
Four decades of research on bent functions, Des. Codes Cryptogr., 78 (2016), 5-50.
doi: 10.1007/s10623-015-0145-8. |
[4] |
F. Caullery and F. Rodier, Distribution of the absolute indicator of random Boolean functions, hal-01679358f, (2018), available at: https://hal.archives-ouvertes.fr/hal-01679358/document. Google Scholar |
[5] |
V. Y.-W. Chen, The Gowers Norm in the Testing of Boolean Functions, Ph.D. Thesis, Massachusetts Institute of Technology, June 2009. |
[6] |
T. W. Cusick and P. Stănică, Cryptographic Boolean Functions and Applications, Elsevier/Academic Press, Amsterdam, 2009.
![]() |
[7] |
J. F. Dillon,
Elementary Hadamard difference sets, Proceedings of the Sixth Southeastern Conference on Combinatorics, Graph Theory, and Computing, Congressus Numerantium, Utilitas Math., Winnipeg, Man., 14 (1975), 237-249.
|
[8] |
H. Dobbertin and G. Leander,
Bent functions embedded into the recursive framework of $\mathbb{Z}$-bent functions, Des. Codes Cryptogr., 49 (2008), 3-22.
doi: 10.1007/s10623-008-9189-3. |
[9] |
S. Gangopadhyay, B. Mandal and P. Stănică,
Gowers $U_3$ norm of some classes of bent Boolean functions, Des. Codes Cryptogr., 86 (2018), 1131-1148.
doi: 10.1007/s10623-017-0383-z. |
[10] |
S. Gangopadhyay, E. Pasalic, P. Stănică and S. Datta,
A note on non-splitting $\mathbb{Z}$-functions, Inf. Proc. Letters, 121 (2017), 1-5.
doi: 10.1016/j.ipl.2017.01.001. |
[11] |
S. Hodžić, W. Meidl and E. Pasalic,
Full characterization of generalized bent functions as (semi)-bent spaces, their dual and the Gray image, IEEE Trans. Inf. Theory, 64 (2018), 5432-5440.
doi: 10.1109/TIT.2018.2837883. |
[12] |
S. Hodžić and E. Pasalic,
Generalized bent functions—Some general construction methods and related necessary and sufficient conditions, Cryptogr. Commun., 7 (2015), 469-483.
doi: 10.1007/s12095-015-0126-9. |
[13] |
N. Kolomeec and A. Pavlov, Bent Functions on the Minimal Distance, IEEE Region 8 SIBIRCON-2010, Irkutsk Listvyanka, Russia, 2010. Google Scholar |
[14] |
P. V. Kumar, R. A. Scholtz and L. R. Welch,
Generalized bent functions and their properties, J. Combin Theory Ser. A, 40 (1985), 90-107.
doi: 10.1016/0097-3165(85)90049-4. |
[15] |
T. Martinsen, W. Meidl, S. Mesnager and P. Stănică,
Decomposing generalized bent and hyperbent functions, IEEE Trans. Inf. Theory, 63 (2017), 7804-7812.
doi: 10.1109/TIT.2017.2754498. |
[16] |
T. Martinsen, W. Meidl, A. Pott and P. Stănică,
On symmetry and differential properties of generalized Boolean functions, Arithmetic of Finite Fields, Lecture Notes in Comput. Sci., Springer, Cham, 11321 (2018), 207-223.
|
[17] |
T. Martinsen, W. Meidl and P. Stănică,
Generalized bent functions and their Gray images, Arithmetic of Finite Fields, Lecture Notes in Comput. Sci., Springer, Cham, 10064 (2017), 160-173.
|
[18] |
T. Martinsen, W. Meidl and P. Stănică,
Partial spread and vectorial generalized bent functions, Des. Codes Cryptogr., 85 (2017), 1-13.
doi: 10.1007/s10623-016-0283-7. |
[19] |
S. Mesnager, Bent Functions. Fundamentals and Results, Springer-Verlag, 2016.
doi: 10.1007/978-3-319-32595-8. |
[20] |
S. Mesnager, C. M. Tang, Y. F. Qi, L. B. Wang, B. F. Wu and K. Q. Feng,
Further results on generalized bent functions and their complete characterization, IEEE Trans. Inform. Theory, 64 (2018), 5441-5452.
doi: 10.1109/TIT.2018.2835518. |
[21] |
B. Preneel, R. Govaerts and J. Vandewalle, Cryptographic properties of quadratic Boolean functions, Int. Symp. Finite Fields and Appl., (1991), 9pp. Google Scholar |
[22] |
O. S. Rothaus,
On "bent" functions, J. Combin. Theory Ser. A, 20 (1976), 300-305.
doi: 10.1016/0097-3165(76)90024-8. |
[23] |
K. U. Schmidt,
Quaternary constant-amplitude codes for multicode CDMA, IEEE Trans. Inf. Theory, 55 (2009), 1824-1832.
doi: 10.1109/TIT.2009.2013041. |
[24] |
P. Solé and N. Tokareva, Connections between quaternary and binary bent functions, Prikl. Diskr. Mat., 1 (2009), 16–18, http://eprint.iacr.org/2009/544.pdf. Google Scholar |
[25] |
P. Stănică, Weak and strong $2^k$-bent functions, IEEE Trans. Inf. Theory, 62 (2016), 2827-2835. Google Scholar |
[26] |
P. Stănică, T. Martinsen, S. Gangopadhyay and B. K. Singh,
Bent and generalized bent Boolean functions, Des. Codes Cryptogr., 69 (2013), 77-94.
doi: 10.1007/s10623-012-9622-5. |
[27] |
C. M. Tang, C. Xiang, Y. F. Qi and K. Q. Feng,
Complete characterization of generalized bent and $2^k$-bent Boolean functions, IEEE Trans. Inf. Theory, 63 (2017), 4668-4674.
doi: 10.1109/TIT.2017.2686987. |
[28] |
N. Tokareva, Bent Functions. Results and Applications to Cryptography, Elsevier/Academic Press, Amsterdam, 2015.
![]() |
[29] |
F. Zhang, S. Xia, P. Stănică and Y. Zhou, Further results on constructions of generalized bent Boolean functions, Inf. Sciences-China, 59 (2016), 1-3. Google Scholar |
[30] |
X.-M. Zhang and Y. L. Zheng,
GAC—the criterion for global avalanche characteristics of cryptographic functions, J. UCS, 1 (1995), 320-337.
|
show all references
References:
[1] |
L. Budaghyan, Construction and Analysis of Cryptographic Functions, Springer, Cham, 2014.
doi: 10.1007/978-3-319-12991-4. |
[2] |
C. Carlet, Boolean functions for cryptography and error correcting codes, Boolean Methods and Models, Cambridge Univ. Press, Cambridge, (2010), 257–397. Google Scholar |
[3] |
C. Carlet and S. Mesnager,
Four decades of research on bent functions, Des. Codes Cryptogr., 78 (2016), 5-50.
doi: 10.1007/s10623-015-0145-8. |
[4] |
F. Caullery and F. Rodier, Distribution of the absolute indicator of random Boolean functions, hal-01679358f, (2018), available at: https://hal.archives-ouvertes.fr/hal-01679358/document. Google Scholar |
[5] |
V. Y.-W. Chen, The Gowers Norm in the Testing of Boolean Functions, Ph.D. Thesis, Massachusetts Institute of Technology, June 2009. |
[6] |
T. W. Cusick and P. Stănică, Cryptographic Boolean Functions and Applications, Elsevier/Academic Press, Amsterdam, 2009.
![]() |
[7] |
J. F. Dillon,
Elementary Hadamard difference sets, Proceedings of the Sixth Southeastern Conference on Combinatorics, Graph Theory, and Computing, Congressus Numerantium, Utilitas Math., Winnipeg, Man., 14 (1975), 237-249.
|
[8] |
H. Dobbertin and G. Leander,
Bent functions embedded into the recursive framework of $\mathbb{Z}$-bent functions, Des. Codes Cryptogr., 49 (2008), 3-22.
doi: 10.1007/s10623-008-9189-3. |
[9] |
S. Gangopadhyay, B. Mandal and P. Stănică,
Gowers $U_3$ norm of some classes of bent Boolean functions, Des. Codes Cryptogr., 86 (2018), 1131-1148.
doi: 10.1007/s10623-017-0383-z. |
[10] |
S. Gangopadhyay, E. Pasalic, P. Stănică and S. Datta,
A note on non-splitting $\mathbb{Z}$-functions, Inf. Proc. Letters, 121 (2017), 1-5.
doi: 10.1016/j.ipl.2017.01.001. |
[11] |
S. Hodžić, W. Meidl and E. Pasalic,
Full characterization of generalized bent functions as (semi)-bent spaces, their dual and the Gray image, IEEE Trans. Inf. Theory, 64 (2018), 5432-5440.
doi: 10.1109/TIT.2018.2837883. |
[12] |
S. Hodžić and E. Pasalic,
Generalized bent functions—Some general construction methods and related necessary and sufficient conditions, Cryptogr. Commun., 7 (2015), 469-483.
doi: 10.1007/s12095-015-0126-9. |
[13] |
N. Kolomeec and A. Pavlov, Bent Functions on the Minimal Distance, IEEE Region 8 SIBIRCON-2010, Irkutsk Listvyanka, Russia, 2010. Google Scholar |
[14] |
P. V. Kumar, R. A. Scholtz and L. R. Welch,
Generalized bent functions and their properties, J. Combin Theory Ser. A, 40 (1985), 90-107.
doi: 10.1016/0097-3165(85)90049-4. |
[15] |
T. Martinsen, W. Meidl, S. Mesnager and P. Stănică,
Decomposing generalized bent and hyperbent functions, IEEE Trans. Inf. Theory, 63 (2017), 7804-7812.
doi: 10.1109/TIT.2017.2754498. |
[16] |
T. Martinsen, W. Meidl, A. Pott and P. Stănică,
On symmetry and differential properties of generalized Boolean functions, Arithmetic of Finite Fields, Lecture Notes in Comput. Sci., Springer, Cham, 11321 (2018), 207-223.
|
[17] |
T. Martinsen, W. Meidl and P. Stănică,
Generalized bent functions and their Gray images, Arithmetic of Finite Fields, Lecture Notes in Comput. Sci., Springer, Cham, 10064 (2017), 160-173.
|
[18] |
T. Martinsen, W. Meidl and P. Stănică,
Partial spread and vectorial generalized bent functions, Des. Codes Cryptogr., 85 (2017), 1-13.
doi: 10.1007/s10623-016-0283-7. |
[19] |
S. Mesnager, Bent Functions. Fundamentals and Results, Springer-Verlag, 2016.
doi: 10.1007/978-3-319-32595-8. |
[20] |
S. Mesnager, C. M. Tang, Y. F. Qi, L. B. Wang, B. F. Wu and K. Q. Feng,
Further results on generalized bent functions and their complete characterization, IEEE Trans. Inform. Theory, 64 (2018), 5441-5452.
doi: 10.1109/TIT.2018.2835518. |
[21] |
B. Preneel, R. Govaerts and J. Vandewalle, Cryptographic properties of quadratic Boolean functions, Int. Symp. Finite Fields and Appl., (1991), 9pp. Google Scholar |
[22] |
O. S. Rothaus,
On "bent" functions, J. Combin. Theory Ser. A, 20 (1976), 300-305.
doi: 10.1016/0097-3165(76)90024-8. |
[23] |
K. U. Schmidt,
Quaternary constant-amplitude codes for multicode CDMA, IEEE Trans. Inf. Theory, 55 (2009), 1824-1832.
doi: 10.1109/TIT.2009.2013041. |
[24] |
P. Solé and N. Tokareva, Connections between quaternary and binary bent functions, Prikl. Diskr. Mat., 1 (2009), 16–18, http://eprint.iacr.org/2009/544.pdf. Google Scholar |
[25] |
P. Stănică, Weak and strong $2^k$-bent functions, IEEE Trans. Inf. Theory, 62 (2016), 2827-2835. Google Scholar |
[26] |
P. Stănică, T. Martinsen, S. Gangopadhyay and B. K. Singh,
Bent and generalized bent Boolean functions, Des. Codes Cryptogr., 69 (2013), 77-94.
doi: 10.1007/s10623-012-9622-5. |
[27] |
C. M. Tang, C. Xiang, Y. F. Qi and K. Q. Feng,
Complete characterization of generalized bent and $2^k$-bent Boolean functions, IEEE Trans. Inf. Theory, 63 (2017), 4668-4674.
doi: 10.1109/TIT.2017.2686987. |
[28] |
N. Tokareva, Bent Functions. Results and Applications to Cryptography, Elsevier/Academic Press, Amsterdam, 2015.
![]() |
[29] |
F. Zhang, S. Xia, P. Stănică and Y. Zhou, Further results on constructions of generalized bent Boolean functions, Inf. Sciences-China, 59 (2016), 1-3. Google Scholar |
[30] |
X.-M. Zhang and Y. L. Zheng,
GAC—the criterion for global avalanche characteristics of cryptographic functions, J. UCS, 1 (1995), 320-337.
|
[1] |
Chaoqian Li, Yajun Liu, Yaotang Li. Note on $ Z $-eigenvalue inclusion theorems for tensors. Journal of Industrial & Management Optimization, 2021, 17 (2) : 687-693. doi: 10.3934/jimo.2019129 |
[2] |
Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020378 |
[3] |
Wei Liu, Pavel Krejčí, Guoju Ye. Continuity properties of Prandtl-Ishlinskii operators in the space of regulated functions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3783-3795. doi: 10.3934/dcdsb.2017190 |
[4] |
Shihu Li, Wei Liu, Yingchao Xie. Large deviations for stochastic 3D Leray-$ \alpha $ model with fractional dissipation. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2491-2509. doi: 10.3934/cpaa.2019113 |
[5] |
Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195 |
[6] |
W. Cary Huffman. On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes. Advances in Mathematics of Communications, 2013, 7 (3) : 349-378. doi: 10.3934/amc.2013.7.349 |
[7] |
Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25 |
[8] |
Andrea Cianchi, Adele Ferone. Improving sharp Sobolev type inequalities by optimal remainder gradient norms. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1363-1386. doi: 10.3934/cpaa.2012.11.1363 |
[9] |
Mats Gyllenberg, Jifa Jiang, Lei Niu, Ping Yan. On the classification of generalized competitive Atkinson-Allen models via the dynamics on the boundary of the carrying simplex. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 615-650. doi: 10.3934/dcds.2018027 |
2019 Impact Factor: 0.734
Tools
Metrics
Other articles
by authors
[Back to Top]