\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On the non-Abelian group code capacity of memoryless channels

  • * Corresponding author

    * Corresponding author

The author is supported by Fundação Universidade Federal do Pampa - UNIPAMPA, Brazil

Abstract Full Text(HTML) Figure(0) / Table(2) Related Papers Cited by
  • In this work is provided a definition of group encoding capacity $ C_G $ of non-Abelian group codes transmitted through symmetric channels. It is shown that this $ C_G $ is an upper bound of the set of rates of these non-Abelian group codes that allow reliable transmission. Also, is inferred that the $ C_G $ is a lower bound of the channel capacity. After that, is computed the $ C_G $ of the group code over the dihedral group transmitted through the 8PSK-AWGN channel then is shown that it equals the channel capacity. It remains an open problem whether there exist non-Abelian group codes of rate arbitrarily close to $ C_G $ and arbitrarily small error probability.

    Mathematics Subject Classification: Primary: 94A05, 94A24; Secondary: 94B60.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Table 1.  $ G(\mathit{\boldsymbol{l}}) $-Symmetric sub-channels the $ D_4 $-symmetric channel 8PSK-AWGN

    $ \rho $ Array Sub-group $ G(\mathit{\boldsymbol{l}}_{ijk}) $ Sub-Constellation $ {\mathcal{X}}(\mathit{\boldsymbol{l}}_{ijk}) $
    1 $\left( {\begin{array}{*{20}{c}} 1&1\\ 0&{} \end{array}} \right)$ $ 2 {\mathbb{Z}}_4\boxtimes \{0\}=\{e,a^2\} $ $ \{x_0,x_4\} $
    $\left( {\begin{array}{*{20}{c}} 1&1\\ 1&{} \end{array}} \right)$ $ 2 {\mathbb{Z}}_4\boxtimes {\mathbb{Z}}_2 = \{e,b,a^2,a^2b\} $ $ \{x_0,x_1,x_4,x_5\} $
    2 $\left( {\begin{array}{*{20}{c}} 1&2\\ 0&{} \end{array}} \right)$ $ {\mathbb{Z}}_4\boxtimes \{0\}=\{e,a,a^2,a^3\} $ $ \{x_0,x_2,x_4,x_6\} $
    $\left( {\begin{array}{*{20}{c}} 1&2\\ 1&{} \end{array}} \right)$ $ {\mathbb{Z}}_4\boxtimes {\mathbb{Z}}_2 = D_4 $ $ {\mathcal{X}}_8 $
     | Show Table
    DownLoad: CSV

    Table 2.  Output probability densities $ \lambda_{\mathit{\boldsymbol{l}}_{ijk}} $ and capacities $ C_{\mathit{\boldsymbol{l}}_{ijk}} $ of the sub-channels $ G(\mathit{\boldsymbol{l}}) $ of the $ D_4 $-symmetric channel 8PSK-AWGN, where $ p_i(y): = p(y\vert x_i) $

    Array Sub-Constell. $ {\mathcal{X}}(\mathit{\boldsymbol{l}}_{ijk}) $ Density $ \lambda_{\mathit{\boldsymbol{l}}_{ijk}} $ Capacity $ C_{\mathit{\boldsymbol{l}}_{ijk}} $
    $\left( {\begin{array}{*{20}{c}} 1&1\\ 0&{} \end{array}} \right)$ $ \{x_0,x_4\} $ $ \frac{1}{2}(p_0+p_4) $ $ H(\lambda_{\mathit{\boldsymbol{l}}_{110}})-H(p_0) $
    $\left( {\begin{array}{*{20}{c}} 1&1\\ 1&{} \end{array}} \right)$ $ \{x_0,x_1,x_4,x_5\} $ $ \frac{1}{4}(p_0+p_1+p_4+p_5) $ $ H(\lambda_{\mathit{\boldsymbol{l}}_{111}})-H(p_0) $
    $\left( {\begin{array}{*{20}{c}} 1&2\\ 0&{} \end{array}} \right)$ $ \{x_0,x_2,x_4,x_6\} $ $ \frac{1}{4}(p_0+p_2+p_4+p_6) $ $ H(\lambda_{\mathit{\boldsymbol{l}}_{120}})-H(p_0) $
    $\left( {\begin{array}{*{20}{c}} 1&2\\ 1&{} \end{array}} \right)$ $ {\mathcal{X}}_8 $ $ \frac{1}{8}(p_0+p_1+\dots+p_7) $ $ H(\lambda_{\mathit{\boldsymbol{l}}_{121}})-H(p_0) $
     | Show Table
    DownLoad: CSV
  • [1] R. Ahlswede, Group codes do not achieve shannon's channel capacity for general discrete channels, The Annals of Mathematical Statistics, 42 (1971), 224-240.  doi: 10.1214/aoms/1177693508.
    [2] J. P. Arpasi, One example of a non-Abelian group code over AWGN channels, Proceedings of the 14th Canadian Workshop on Information Theory, (2015), 115–119. doi: 10.1109/CWIT.2015.7255165.
    [3] G. Como, Group codes outperform binary-coset codes on non-binary memoryless channels, IEEE Trans. Inform. Theory, 56 (2010), 4321-4334.  doi: 10.1109/TIT.2010.2054330.
    [4] G. Como and F. Fagnani, The capacity of abelian group codes over symmetric channels, IEEE Trans. Inform. Theory, 45 (2009), 3-31. 
    [5] G. Como and F. Fagnani, Average spectra and minimum distance of low-density parity-check codes over abelian groups, SIAM J. Discrete Math., 23 (2008/09), 19-53.  doi: 10.1137/070686615.
    [6] T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd edition, Wiley InterScience, Piscataway, NJ, 2006.
    [7] G. D. Forney, Geometrically uniform codes, IEEE Trans. Inform. Theory, 37 (1991), 1241-1260.  doi: 10.1109/18.133243.
    [8] R. Gallager, Information Theory and Reliable Communication, Wiley and Sons, 1970. doi: 10.1007/978-3-7091-2945-6.
    [9] F. Garin and F. Fagnani, Analysis of serial turbo codes over abelian groups for symmetric channels, SIAM J. Discrete Math., 22 (2008), 1488-1526.  doi: 10.1137/07068802X.
    [10] I. N. Herstein, Topics in Algebra, 2nd edition, Wiley and Sons, New York, 1975.
    [11] H. J. KimJ. B. Nation and A. V. Shepler, Group coding with complex isometries, IEEE Trans. Inform. Theory, 61 (2015), 33-50.  doi: 10.1109/TIT.2014.2365020.
    [12] H. A. Loeliger, Signal sets matched to groups, IEEE Trans. Inform. Theory, 37 (1991), 1675-1682.  doi: 10.1109/18.104333.
    [13] H. A. Loeliger and T. Mittelholzer, Convolutional codes over groups. Codes and complexity, IEEE Trans. Inform. Theory, 42 (1996), 1660-1686.  doi: 10.1109/18.556664.
    [14] T. Mittelholzer and J. Lahtonen, Group codes generated by finite reflection groups, IEEE Trans. Inform. Theory, 42 (1996), 519-528.  doi: 10.1109/18.485721.
    [15] W. W. PetersonJ. B. Nation and M. P. Fossorier, Reflection group codes and their decoding, IEEE Trans. Inform. Theory, 56 (2010), 6273-6293.  doi: 10.1109/TIT.2010.2080571.
    [16] J. J. Rotman, An Introduction to the Theory of the Groups, 4th edition, Graduate Texts in Mathematics, 148. Springer-Verlag, New York, 1995. doi: 10.1007/978-1-4612-4176-8.
    [17] A. G. Sahebi and P. S. Pradhan, Abelian group codes for channel coding and source coding, IEEE Trans. Inform. Theory, 61 (2015), 2399-2414.  doi: 10.1109/TIT.2015.2407874.
    [18] N. Shulman and M. Feder, Random coding techniques for non-random codes, IEEE Trans. Inform. Theory, 45 (1999), 2101-2104.  doi: 10.1109/18.782147.
    [19] D. Slepian, Group codes for the gaussian channels, Bell Systems Technical Journal, 47 (1968), 575-602.  doi: 10.1002/j.1538-7305.1968.tb02486.x.
  • 加载中

Tables(2)

SHARE

Article Metrics

HTML views(827) PDF downloads(296) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return