$ row\ indices $ | $ column\ indices $ |
$ (1, 2, 3) $ | $ (1, 2, 7, 10), \ (1, 3, 4, 13), \ (1, 3, 4, 14), \ (1, 3, 13, 14) $ |
$ (1, 2, 3) $ | $ (1, 4, 5, 16), \ (1, 5, 8, 16), \ (1, 5, 10, 16), \ (1, 5, 12, 15) $ |
Trapping sets significantly influence the performance of low-density parity-check codes. An $ (a, b) $ elementary trapping set (ETS) causes high decoding failure rate and exert a strong influence on the error floor of the code, where $ a $ and $ b $ denote the size and the number of unsatisfied check-nodes in the ETS, respectively. The smallest size of an ETS in $ (3, n) $-regular LDPC codes with girth 6 is 4. In this paper, we provide sufficient conditions to construct fully connected $ (3, n) $-regular algebraic-based QC-LDPC codes with girth 6 whose Tanner graphs are free of $ (a, b) $ ETSs with $ a\leq5 $ and $ b\leq2 $. We apply these sufficient conditions to the exponent matrix of a new algebraic-based QC-LDPC code with girth at least 6. As a result, we obtain the maximum size of a submatrix of the exponent matrix which satisfies the sufficient conditions and yields a Tanner graph free of those ETSs with small size. Some algebraic-based QC-LDPC code constructions with girth 6 in the literature are special cases of our construction. Our experimental results show that removing ETSs with small size contribute to have better performance curves in the error floor region.
Citation: |
Table 1.
Row indices
$ row\ indices $ | $ column\ indices $ |
$ (1, 2, 3) $ | $ (1, 2, 7, 10), \ (1, 3, 4, 13), \ (1, 3, 4, 14), \ (1, 3, 13, 14) $ |
$ (1, 2, 3) $ | $ (1, 4, 5, 16), \ (1, 5, 8, 16), \ (1, 5, 10, 16), \ (1, 5, 12, 15) $ |
[1] |
F. Amirzade, M. Alishahi and M.-R. Sadeghi, An algebraic construction of QC-LDPC codes based on powers of primitive elements in a finite field and free of small ETSs, J. Algebraic Struct. The. Appl., 6 (2019), 129-140.
![]() |
[2] |
F. Amirzade and M.-R. Sadeghi, Lower bounds on the lifting degree of QC-LDPC codes by difference matrices, IEEE Access, 6 (2018), 23688-23700.
doi: 10.1109/ACCESS.2018.2830406.![]() ![]() |
[3] |
F. Amirzade and M.-R. Sadeghi, Analytical lower bounds on the size of elementary trapping sets of variable-regular LDPC codes with any girth and irregular ones with girth 8, IEEE Trans. Commun., 66 (2018), 2313-2321.
doi: 10.1109/TCOMM.2018.2805834.![]() ![]() |
[4] |
F. Amirzade and M.-R. Sadeghi, Efficient search of QC-LDPC codes with girths 6 and 8 and free of small elementary trapping sets with small size, arXiv: 1803.08141.
![]() |
[5] |
M. Battaglioni, A. Tasdighi, M. Baldi, M. H. Tadayon and F. Chiaraluce, Compact QC-LDPC block and SC-LDPC convolutional codes for low-latency communications, 2018 IEEE 29th Ann. Int. Symp. PIMRC, (2018), 1–5.
doi: 10.1109/PIMRC.2018.8580758.![]() ![]() |
[6] |
I. E. Bocharova, F. Hug, R. Johannesson, B. D. Kudryashov and R. V. Satyukov, Searching for voltage graph-based LDPC tailbiting codes with large girth, IEEE Trans. Inf. Theory, 58 (2012), 2265-2279.
doi: 10.1109/TIT.2011.2176717.![]() ![]() ![]() |
[7] |
J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, American Elsevier Publishing Co., Inc., New York, 1976.
![]() ![]() |
[8] |
Q. J. Diao, Q. Huang, S. Lin and K. Abdel-Ghaffar, A matrix-theoretic approach for analyzing quasi-cyclic low-density parity-check codes, IEEE Trans. Inf. Theory, 58 (2012), 4030-4048.
doi: 10.1109/TIT.2012.2184834.![]() ![]() ![]() |
[9] |
Q. J. Diao, Q. Huang, S. Lin and K. Abdel-Ghaffar, A transform approach for analyzing and constructing quasi-cyclic low-density parity-check codes, IEEE Trans. Inf. Theory Appl. Workshop, San Diego, CA, USA, (2011), 1–8.
![]() |
[10] |
M. Diouf, D. Declercq, S. Ouya and B. Vasic, A PEG-like LDPC code design avoiding short trapping sets, IEEE Int. Symp. Inf. Theory (ISIT), (2015), 1079–1083.
doi: 10.1109/ISIT.2015.7282621.![]() ![]() |
[11] |
M. P. C. Fossorier, Quasi-cyclic low-density parity-check codes from circulant permutation matrices, IEEE Trans. Inf. Theory, 50 (2004), 1788-1793.
doi: 10.1109/TIT.2004.831841.![]() ![]() ![]() |
[12] |
Q. Huang, Q. Diao, S. Lin and K. Abdel-Ghaffar, Trapping sets of structured LDPC codes, 2011 IEEE Int. Symp. Inf. Theory, (2011), 1086–1090.
![]() |
[13] |
J. Li, K. Liu, S. Lin and K. Abdel-Ghaffar, Algebraic quasi-cyclic LDPC codes: Construction, low error-floor, large girth and a reduced-complexity decoding scheme, IEEE Trans. Commun., 62 (2014), 2626-2637.
doi: 10.1109/TCOMM.2014.2339329.![]() ![]() |
[14] |
J. Li, K. Liu, S. Lin and K. Abdel-Ghaffar, Quasi-cyclic LDPC codes on two arbitrary sets of a finite field, IEEE Int. Symp. Inf. Theory, (2014), 2454–2458.
![]() |
[15] |
J. Li, K. Liu, S. Lin and K. Abdel-Ghaffar, A matrix-theoretic approach to the construction of non-binary quasi-cyclic LDPC codes, IEEE Trans. Commun., 63 (2015), 1057-1068.
![]() |
[16] |
K. Liu, Q. Huang, S. Lin and K. Abdel-Ghaffar, Quasi-cyclic LDPC codes: Construction and rank analysis of their parity-check matrices, IEEE Inf. Theory and Appl. Workshop, (2012), 227–233.
![]() |
[17] |
D. V. Nguyen, S. K. Chilappagari, N. W. Marcellin and B. Vasic, On the construction of structured LDPC codes free of small trapping sets, IEEE Trans. Inf. Theory, 58 (2012), 2280-2302.
doi: 10.1109/TIT.2011.2173733.![]() ![]() ![]() |
[18] |
M. E. O'Sullivan, Algebraic construction of sparse matrices with large girth, IEEE Trans. Inf. Theory, 52 (2006), 718-727.
doi: 10.1109/TIT.2005.862120.![]() ![]() ![]() |
[19] |
M.-R. Sadeghi, Optimal search for girth-8 quasi cyclic and spatially coupled multiple-edge LDPC codes, IEEE Commun. Letters, 23 (2019), 1466-1469.
doi: 10.1109/LCOMM.2019.2924892.![]() ![]() |
[20] |
M.-R. Sadeghi and F. Amirzade, Analytical lower bound on the lifting degree of multiple-edge QC-LDPC codes with girth 6, IEEE Commun. Letters, 22 (2018), 1528-1531.
doi: 10.1109/LCOMM.2018.2841873.![]() ![]() |
[21] |
A. Sakzad, M.-R. Sadeghi and D. Panario, Codes with girth 8 Tanner graph representation, Designs, Codes and Cryptography, 57 (2010), 71-81.
doi: 10.1007/s10623-009-9349-0.![]() ![]() ![]() |
[22] |
S. Song, B. Zhou, S. Lin and K. Abdel-Ghaffar, A unified approach to the construction of binary and nonbinary Quasi-cyclic LDPC codes based on finite field, IEEE Trans. Commun., 57 (2009), 84-93.
![]() |
[23] |
M. H Tadayon, T. Alireza and B. Massino, Efficient search of compact QC-LDPC and SC-LDPC convolutional codes with large girth, IEEE Commun. Letters, 22 (2018), 1156-1159.
doi: 10.1109/LCOMM.2018.2827959.![]() ![]() |
[24] |
X. F. Tao, Y. F. Li, Y. H. Liu and Z. Q. Hu, On the construction of LDPC codes free of small trapping sets by controlling cycles, IEEE Commun. Letters, 22 (2018), 9-12.
doi: 10.1109/LCOMM.2017.2679707.![]() ![]() |
[25] |
A. Tasdighi, A. H. Banihashemi and M. R. Sadeghi, Efficient search of girth-optimal QC-LDPC codes, IEEE Trans. Inf. Theory, 62 (2016), 1552-1564.
doi: 10.1109/TIT.2016.2523979.![]() ![]() ![]() |
[26] |
J. D. Wang, L. Dolecek and R. D. Wesel, The cycle consistency matrix approach to absorbing sets in separable circulant-based LDPC codes, IEEE Trans. Inf. Theory, 59 (2013), 2293-2314.
doi: 10.1109/TIT.2012.2235122.![]() ![]() ![]() |
[27] |
Y. G. Wang, J. S. Yedidia and S. C. Draper, Construction of high-girth QC-LDPC codes, 2008 5th Int. Symp. Turbo Codes and related Topics, (2008), 180–185.
![]() |
[28] |
G. Zhang, R. Sun and X. Wang, Explicit construction of girth-eight QC-LDPC codes and its application in CRT methods, J. Commun., 33 (2012), 171-176.
![]() |
[29] |
L. Zhang, S. Lin, K. Abdel Ghaffar, Z. Ding and B. Zhou, Quasi-Cyclic LDPC codes on cyclic subgroups of finite fields, IEEE Trans. Commun., 59 (2011), 2330-2336.
doi: 10.1109/TCOMM.2011.060911.100208.![]() ![]() |
[30] |
L. Zhang, S. Lin, K. Abdel Ghaffar and B. Zhou, Circulant arrays: Rank analysis and construction of Quasi-Cyclic LDPC codes, IEEE Int. Symp. Inf. Theory (ISIT), (2010), 814–818.
doi: 10.1109/ISIT.2010.5513640.![]() ![]() |
A (5, 3) EAS with $\gamma = 4$ and its corresponding variable node graph
The variable node graphs of
The comparison of the performance curves of two $(3, 4)$-regular QC-LDPC codes with the same length. The exponent matrices of both codes, $C1$ and $C2$, are submatrices of B in (10)