-
Previous Article
Cryptographic properties of cyclic binary matrices
- AMC Home
- This Issue
-
Next Article
Two classes of near-optimal codebooks with respect to the Welch bound
An explicit representation and enumeration for negacyclic codes of length $ 2^kn $ over $ \mathbb{Z}_4+u\mathbb{Z}_4 $
1. | School of Mathematics and Statistics, Shandong University of Technology, Zibo, Shandong 255091, China |
2. | Hubei Key Laboratory of Applied Mathematics, Faculty of Mathematics and Statistics, Hubei University, Wuhan 430062, China |
3. | School of Mathematics and Statistics, Changsha University of Science and Technology, Changsha, Hunan 410114, China |
4. | Division of Computational Mathematics and Engineering, Institute for Computational Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam |
5. | Faculty of Mathematics and Statistics, Ton Duc Thang University, Ho Chi Minh City, Vietnam |
6. | Department of Mathematics, Dr. SPM IIIT Naya Raipur, Atal Nagar 493661, India |
7. | Chern Institute of Mathematics and LPMC, Nankai University, Tianjin Key Laboratory of Network and Data Security Technology, Tianjin 300071, China |
In this paper, we give an explicit representation and enumeration for negacyclic codes of length $ 2^kn $ over the local non-principal ideal ring $ R = \mathbb{Z}_4+u\mathbb{Z}_4 $ $ (u^2 = 0) $, where $ k, n $ are arbitrary positive integers and $ n $ is odd. In particular, we present all distinct negacyclic codes of length $ 2^k $ over $ R $ precisely. Moreover, we provide an exact mass formula for the number of negacyclic codes of length $ 2^kn $ over $ R $ and correct several mistakes in some literatures.
References:
[1] |
T. Abualrub and R. Oehmke,
On the generators of $\mathbb{Z}_4$ cyclic codes of lenth $2^e$, IEEE Trans. Inform. Theory, 49 (2003), 2126-2133.
doi: 10.1109/TIT.2003.815763. |
[2] |
T. Abualrub and I. Siap,
Cyclic codes over the ring $\mathbb{Z}_2+u\mathbb{Z}_2$ and $\mathbb{Z}_2+u\mathbb{Z}_2+u^2\mathbb{Z}_2$, Des. Codes Cryptogr., 42 (2007), 273-287.
doi: 10.1007/s10623-006-9034-5. |
[3] |
R. Bandi and M. Bhaintwal, Cyclic codes over $\mathbb{Z}_4+u\mathbb{Z}_4$, 2015, https://www.researchgate.net/publication/289506486. |
[4] |
R. Bandi, M. Bhaintwal and N. Aydin,
A mass formula for negacyclic codes of length $2^k$ and some good negacyclic codes over $\mathbb{Z}_4+u\mathbb{Z}_4$, Cryptogr. Commun., 9 (2017), 241-272.
doi: 10.1007/s12095-015-0172-3. |
[5] |
T. Blackford,
Negacyclic codes over $\mathbb{Z}_4$ of even length, IEEE Trans. Inform. Theory, 49 (2003), 1417-1424.
doi: 10.1109/TIT.2003.811915. |
[6] |
Y. Cao,
On constacyclic codes over finite chain rings, Finite Fields Appl., 24 (2013), 124-135.
doi: 10.1016/j.ffa.2013.07.001. |
[7] |
Y. Cao and Q. Li,
Cyclic codes of odd length over $\mathbb{Z}_4[u]/\langle u^k\rangle$, Cryptogr. Commun., 9 (2017), 599-624.
doi: 10.1007/s12095-016-0204-7. |
[8] |
Y. Cao, Y. Cao and F.-W. Fu,
Cyclic codes over $\mathbb{F}_{2^m}[u]/\langle u^k \rangle$ of oddly even length, Appl. Algebra in Engrg. Commun. Comput., 27 (2016), 259-277.
doi: 10.1007/s00200-015-0281-4. |
[9] |
Y. Cao, Y. Cao and Q. Li,
Concatenated structure of cyclic codes over $\mathbb{Z}_4$ of length $4n$, Appl. Algebra in Engrg. Commun. Comput., 27 (2016), 279-302.
doi: 10.1007/s00200-015-0283-2. |
[10] |
Y. Cao, Y. Cao, S. T. Dougherty and S. Ling,
Construction and enumeration for self-dual cyclic codes over $\mathbb{Z}_4$ of oddly even length, Des. Codes Cryptogr., 87 (2019), 2419-2446.
doi: 10.1007/s10623-019-00629-6. |
[11] |
Y. Cao, Y. Cao and Q. Li,
The concatenated structure of cyclic codes over $\mathbb{Z}_{p^2}$, J. Appl. Math. Comput., 52 (2016), 363-385.
doi: 10.1007/s12190-015-0945-z. |
[12] |
Y. Cao and Y. Cao,
Negacyclic codes over the local ring $\mathbb{Z}_4[v]/\langle v^2+2v\rangle$ of oddly even length and their Gray images, Finite Fields Appl., 52 (2018), 67-93.
doi: 10.1016/j.ffa.2018.03.005. |
[13] |
Y. Cao and Y. Cao,
Complete classification for simple root cyclic codes over the local ring $\mathbb{Z}_4[v]/\langle v^2+2v\rangle$, Cryptogr. Commun., (2019), 1-19.
doi: 10.1007/s12095-019-00403-4. |
[14] |
Y. Cao and Y. Cao, Complete classification for simple-root cyclic codes over $\mathbb{Z}_{p^s}[v]/\langle v^2-pv\rangle$, 2017, https://www.researchgate.net/publication/320620031. |
[15] |
Y. Cao, Y. Cao, H. Q. Dinh, F.-W. Fu, J. Gao and S. Sriboonchitta,
Constacyclic codes of length $np^s$ over $\mathbb{F}_{p^m} + u\mathbb{F}_{p^m} $, Adv. Math. Commun., 12 (2018), 231-262.
doi: 10.3934/amc.2018016. |
[16] |
Y. Cao, Y. Cao, R. Bandi and F.-W. Fu, An explicit representation and enumeration for negacyclic codes of length $2^kn$ over $\mathbb{Z}_4+u\mathbb{Z}_4$, arXiv: 1811.10991 |
[17] |
H. Q. Dinh and S. R. López-Permouth,
Cyclic and negacyclic codes over finite chain rings, IEEE Trans. Inform. Theory, 50 (2004), 1728-1744.
doi: 10.1109/TIT.2004.831789. |
[18] |
H. Q. Dinh,
Constacyclic codes of length $p^s$ over $\mathbb{F}_{p^m}+u \mathbb{F}_{p^m}$, J. Algebra, 324 (2010), 940-950.
doi: 10.1016/j.jalgebra.2010.05.027. |
[19] |
H. Q. Dinh, S. Dhompongsa and S. Sriboonchitta,
Repeated-root constacyclic codes of prime power length over $\frac{\mathbb{F}_{p^m}[u]}{\langle u^a\rangle}$ and their duals, Discrete Math., 339 (2016), 1706-1715.
doi: 10.1016/j.disc.2016.01.020. |
[20] |
S. T. Dougherty, J.-L. Kim, H. Kulosman and H. Liu,
Self-dual codes over commutative Frobenius rings, Finite Fields Appl., 16 (2010), 14-26.
doi: 10.1016/j.ffa.2009.11.004. |
[21] |
S. T. Dougherty and S. Ling,
Cyclic codes over $\mathbb{Z}_4$ of even length, Des. Codes Cryptogr., 39 (2006), 127-153.
doi: 10.1007/s10623-005-2773-x. |
[22] |
G. Norton and A. Sǎlǎgean-Mandache,
On the structure of linear and cyclic codes over finite chain rings, Appl. Algebra in Engrg. Comm. Comput., 10 (2000), 489-506.
doi: 10.1007/PL00012382. |
[23] |
P. Pattanayak and A. K. Singh, A class of cyclic codes cver the ring $\mathbb{Z}_4[u]/\langle u^2\rangle$ and its gray image, arXiv: 1507.04938 |
[24] |
M. Shi, L. Xu and G. Yang,
A note on one weight and two weight projective $\mathbb{Z}_4$-codes, IEEE Trans. Inform. Theory, 63 (2017), 177-182.
doi: 10.1109/TIT.2016.2628408. |
[25] |
M. Shi, L. Qian, L. Sok, N. Aydin and P. Solé,
On constacyclic codes over $\mathbb{Z}_4[u]/\langle u^2-1\rangle$ and their Gray images, Finite Fields Appl., 45 (2017), 86-95.
doi: 10.1016/j.ffa.2016.11.016. |
[26] |
Z.-X. Wan, Lectures on Finite Fields and Galois Rings, World Scientific Publishing Co., Inc., River Edge, NJ, 2003.
doi: 10.1142/5350. |
[27] |
J. A. Wood,
Duality for modules over finite rings and applications to coding theory, American Journal of Mathematics, 121 (1999), 555-575.
doi: 10.1353/ajm.1999.0024. |
[28] |
B. Yildiz and S. Karadeniz,
Linear codes over $\mathbb{Z}_4+u\mathbb{Z}_4$: MacWilliams identities, projections, and formally self-dual codes, Finite Fields Appl., 27 (2014), 24-40.
doi: 10.1016/j.ffa.2013.12.007. |
[29] |
B. Yildiz and N. Aydin,
Cyclic codes over $\mathbb{Z}_4+u\mathbb{Z}_4$ and $\mathbb{Z}_4$ images, International Journal of Information and Coding Theory, 2 (2014), 226-237.
doi: 10.1504/IJICOT.2014.066107. |
show all references
References:
[1] |
T. Abualrub and R. Oehmke,
On the generators of $\mathbb{Z}_4$ cyclic codes of lenth $2^e$, IEEE Trans. Inform. Theory, 49 (2003), 2126-2133.
doi: 10.1109/TIT.2003.815763. |
[2] |
T. Abualrub and I. Siap,
Cyclic codes over the ring $\mathbb{Z}_2+u\mathbb{Z}_2$ and $\mathbb{Z}_2+u\mathbb{Z}_2+u^2\mathbb{Z}_2$, Des. Codes Cryptogr., 42 (2007), 273-287.
doi: 10.1007/s10623-006-9034-5. |
[3] |
R. Bandi and M. Bhaintwal, Cyclic codes over $\mathbb{Z}_4+u\mathbb{Z}_4$, 2015, https://www.researchgate.net/publication/289506486. |
[4] |
R. Bandi, M. Bhaintwal and N. Aydin,
A mass formula for negacyclic codes of length $2^k$ and some good negacyclic codes over $\mathbb{Z}_4+u\mathbb{Z}_4$, Cryptogr. Commun., 9 (2017), 241-272.
doi: 10.1007/s12095-015-0172-3. |
[5] |
T. Blackford,
Negacyclic codes over $\mathbb{Z}_4$ of even length, IEEE Trans. Inform. Theory, 49 (2003), 1417-1424.
doi: 10.1109/TIT.2003.811915. |
[6] |
Y. Cao,
On constacyclic codes over finite chain rings, Finite Fields Appl., 24 (2013), 124-135.
doi: 10.1016/j.ffa.2013.07.001. |
[7] |
Y. Cao and Q. Li,
Cyclic codes of odd length over $\mathbb{Z}_4[u]/\langle u^k\rangle$, Cryptogr. Commun., 9 (2017), 599-624.
doi: 10.1007/s12095-016-0204-7. |
[8] |
Y. Cao, Y. Cao and F.-W. Fu,
Cyclic codes over $\mathbb{F}_{2^m}[u]/\langle u^k \rangle$ of oddly even length, Appl. Algebra in Engrg. Commun. Comput., 27 (2016), 259-277.
doi: 10.1007/s00200-015-0281-4. |
[9] |
Y. Cao, Y. Cao and Q. Li,
Concatenated structure of cyclic codes over $\mathbb{Z}_4$ of length $4n$, Appl. Algebra in Engrg. Commun. Comput., 27 (2016), 279-302.
doi: 10.1007/s00200-015-0283-2. |
[10] |
Y. Cao, Y. Cao, S. T. Dougherty and S. Ling,
Construction and enumeration for self-dual cyclic codes over $\mathbb{Z}_4$ of oddly even length, Des. Codes Cryptogr., 87 (2019), 2419-2446.
doi: 10.1007/s10623-019-00629-6. |
[11] |
Y. Cao, Y. Cao and Q. Li,
The concatenated structure of cyclic codes over $\mathbb{Z}_{p^2}$, J. Appl. Math. Comput., 52 (2016), 363-385.
doi: 10.1007/s12190-015-0945-z. |
[12] |
Y. Cao and Y. Cao,
Negacyclic codes over the local ring $\mathbb{Z}_4[v]/\langle v^2+2v\rangle$ of oddly even length and their Gray images, Finite Fields Appl., 52 (2018), 67-93.
doi: 10.1016/j.ffa.2018.03.005. |
[13] |
Y. Cao and Y. Cao,
Complete classification for simple root cyclic codes over the local ring $\mathbb{Z}_4[v]/\langle v^2+2v\rangle$, Cryptogr. Commun., (2019), 1-19.
doi: 10.1007/s12095-019-00403-4. |
[14] |
Y. Cao and Y. Cao, Complete classification for simple-root cyclic codes over $\mathbb{Z}_{p^s}[v]/\langle v^2-pv\rangle$, 2017, https://www.researchgate.net/publication/320620031. |
[15] |
Y. Cao, Y. Cao, H. Q. Dinh, F.-W. Fu, J. Gao and S. Sriboonchitta,
Constacyclic codes of length $np^s$ over $\mathbb{F}_{p^m} + u\mathbb{F}_{p^m} $, Adv. Math. Commun., 12 (2018), 231-262.
doi: 10.3934/amc.2018016. |
[16] |
Y. Cao, Y. Cao, R. Bandi and F.-W. Fu, An explicit representation and enumeration for negacyclic codes of length $2^kn$ over $\mathbb{Z}_4+u\mathbb{Z}_4$, arXiv: 1811.10991 |
[17] |
H. Q. Dinh and S. R. López-Permouth,
Cyclic and negacyclic codes over finite chain rings, IEEE Trans. Inform. Theory, 50 (2004), 1728-1744.
doi: 10.1109/TIT.2004.831789. |
[18] |
H. Q. Dinh,
Constacyclic codes of length $p^s$ over $\mathbb{F}_{p^m}+u \mathbb{F}_{p^m}$, J. Algebra, 324 (2010), 940-950.
doi: 10.1016/j.jalgebra.2010.05.027. |
[19] |
H. Q. Dinh, S. Dhompongsa and S. Sriboonchitta,
Repeated-root constacyclic codes of prime power length over $\frac{\mathbb{F}_{p^m}[u]}{\langle u^a\rangle}$ and their duals, Discrete Math., 339 (2016), 1706-1715.
doi: 10.1016/j.disc.2016.01.020. |
[20] |
S. T. Dougherty, J.-L. Kim, H. Kulosman and H. Liu,
Self-dual codes over commutative Frobenius rings, Finite Fields Appl., 16 (2010), 14-26.
doi: 10.1016/j.ffa.2009.11.004. |
[21] |
S. T. Dougherty and S. Ling,
Cyclic codes over $\mathbb{Z}_4$ of even length, Des. Codes Cryptogr., 39 (2006), 127-153.
doi: 10.1007/s10623-005-2773-x. |
[22] |
G. Norton and A. Sǎlǎgean-Mandache,
On the structure of linear and cyclic codes over finite chain rings, Appl. Algebra in Engrg. Comm. Comput., 10 (2000), 489-506.
doi: 10.1007/PL00012382. |
[23] |
P. Pattanayak and A. K. Singh, A class of cyclic codes cver the ring $\mathbb{Z}_4[u]/\langle u^2\rangle$ and its gray image, arXiv: 1507.04938 |
[24] |
M. Shi, L. Xu and G. Yang,
A note on one weight and two weight projective $\mathbb{Z}_4$-codes, IEEE Trans. Inform. Theory, 63 (2017), 177-182.
doi: 10.1109/TIT.2016.2628408. |
[25] |
M. Shi, L. Qian, L. Sok, N. Aydin and P. Solé,
On constacyclic codes over $\mathbb{Z}_4[u]/\langle u^2-1\rangle$ and their Gray images, Finite Fields Appl., 45 (2017), 86-95.
doi: 10.1016/j.ffa.2016.11.016. |
[26] |
Z.-X. Wan, Lectures on Finite Fields and Galois Rings, World Scientific Publishing Co., Inc., River Edge, NJ, 2003.
doi: 10.1142/5350. |
[27] |
J. A. Wood,
Duality for modules over finite rings and applications to coding theory, American Journal of Mathematics, 121 (1999), 555-575.
doi: 10.1353/ajm.1999.0024. |
[28] |
B. Yildiz and S. Karadeniz,
Linear codes over $\mathbb{Z}_4+u\mathbb{Z}_4$: MacWilliams identities, projections, and formally self-dual codes, Finite Fields Appl., 27 (2014), 24-40.
doi: 10.1016/j.ffa.2013.12.007. |
[29] |
B. Yildiz and N. Aydin,
Cyclic codes over $\mathbb{Z}_4+u\mathbb{Z}_4$ and $\mathbb{Z}_4$ images, International Journal of Information and Coding Theory, 2 (2014), 226-237.
doi: 10.1504/IJICOT.2014.066107. |
[1] |
Sergio R. López-Permouth, Steve Szabo. On the Hamming weight of repeated root cyclic and negacyclic codes over Galois rings. Advances in Mathematics of Communications, 2009, 3 (4) : 409-420. doi: 10.3934/amc.2009.3.409 |
[2] |
Zihui Liu. Galois LCD codes over rings. Advances in Mathematics of Communications, 2022 doi: 10.3934/amc.2022002 |
[3] |
Aicha Batoul, Kenza Guenda, T. Aaron Gulliver. Some constacyclic codes over finite chain rings. Advances in Mathematics of Communications, 2016, 10 (4) : 683-694. doi: 10.3934/amc.2016034 |
[4] |
Somphong Jitman, San Ling, Patanee Udomkavanich. Skew constacyclic codes over finite chain rings. Advances in Mathematics of Communications, 2012, 6 (1) : 39-63. doi: 10.3934/amc.2012.6.39 |
[5] |
Gianira N. Alfarano, Anina Gruica, Julia Lieb, Joachim Rosenthal. Convolutional codes over finite chain rings, MDP codes and their characterization. Advances in Mathematics of Communications, 2022 doi: 10.3934/amc.2022028 |
[6] |
Delphine Boucher, Patrick Solé, Felix Ulmer. Skew constacyclic codes over Galois rings. Advances in Mathematics of Communications, 2008, 2 (3) : 273-292. doi: 10.3934/amc.2008.2.273 |
[7] |
David Grant, Mahesh K. Varanasi. The equivalence of space-time codes and codes defined over finite fields and Galois rings. Advances in Mathematics of Communications, 2008, 2 (2) : 131-145. doi: 10.3934/amc.2008.2.131 |
[8] |
Minjia Shi, Daitao Huang, Lin Sok, Patrick Solé. Double circulant self-dual and LCD codes over Galois rings. Advances in Mathematics of Communications, 2019, 13 (1) : 171-183. doi: 10.3934/amc.2019011 |
[9] |
Anderson Silva, C. Polcino Milies. Cyclic codes of length $ 2p^n $ over finite chain rings. Advances in Mathematics of Communications, 2020, 14 (2) : 233-245. doi: 10.3934/amc.2020017 |
[10] |
Ferruh Özbudak, Patrick Solé. Gilbert-Varshamov type bounds for linear codes over finite chain rings. Advances in Mathematics of Communications, 2007, 1 (1) : 99-109. doi: 10.3934/amc.2007.1.99 |
[11] |
Eimear Byrne. On the weight distribution of codes over finite rings. Advances in Mathematics of Communications, 2011, 5 (2) : 395-406. doi: 10.3934/amc.2011.5.395 |
[12] |
Zihui Liu, Dajian Liao. Higher weights and near-MDR codes over chain rings. Advances in Mathematics of Communications, 2018, 12 (4) : 761-772. doi: 10.3934/amc.2018045 |
[13] |
Thomas Westerbäck. Parity check systems of nonlinear codes over finite commutative Frobenius rings. Advances in Mathematics of Communications, 2017, 11 (3) : 409-427. doi: 10.3934/amc.2017035 |
[14] |
Nabil Bennenni, Kenza Guenda, Sihem Mesnager. DNA cyclic codes over rings. Advances in Mathematics of Communications, 2017, 11 (1) : 83-98. doi: 10.3934/amc.2017004 |
[15] |
Nuh Aydin, Yasemin Cengellenmis, Abdullah Dertli, Steven T. Dougherty, Esengül Saltürk. Skew constacyclic codes over the local Frobenius non-chain rings of order 16. Advances in Mathematics of Communications, 2020, 14 (1) : 53-67. doi: 10.3934/amc.2020005 |
[16] |
Kanat Abdukhalikov. On codes over rings invariant under affine groups. Advances in Mathematics of Communications, 2013, 7 (3) : 253-265. doi: 10.3934/amc.2013.7.253 |
[17] |
Igor E. Shparlinski. On some dynamical systems in finite fields and residue rings. Discrete and Continuous Dynamical Systems, 2007, 17 (4) : 901-917. doi: 10.3934/dcds.2007.17.901 |
[18] |
M. DeDeo, M. Martínez, A. Medrano, M. Minei, H. Stark, A. Terras. Spectra of Heisenberg graphs over finite rings. Conference Publications, 2003, 2003 (Special) : 213-222. doi: 10.3934/proc.2003.2003.213 |
[19] |
Steven T. Dougherty, Esengül Saltürk, Steve Szabo. Codes over local rings of order 16 and binary codes. Advances in Mathematics of Communications, 2016, 10 (2) : 379-391. doi: 10.3934/amc.2016012 |
[20] |
Steven T. Dougherty, Abidin Kaya, Esengül Saltürk. Cyclic codes over local Frobenius rings of order 16. Advances in Mathematics of Communications, 2017, 11 (1) : 99-114. doi: 10.3934/amc.2017005 |
2020 Impact Factor: 0.935
Tools
Metrics
Other articles
by authors
[Back to Top]