-
Previous Article
Ironwood meta key agreement and authentication protocol
- AMC Home
- This Issue
- Next Article
Some optimal cyclic $ \mathbb{F}_q $-linear $ \mathbb{F}_{q^t} $-codes
1. | College of Applied Sciences, Beijing University of Technology, Beijing 100124, China |
2. | Chern Institute of Mathematics and LPMC, Nankai University, Tianjin 300071, China |
Let $ \mathbb{F}_{q^t} $ be a finite field of cardinality $ q^t $, where $ q $ is a power of a prime number $ p $ and $ t\geq 1 $ is a positive integer. Firstly, a family of cyclic $ \mathbb{F}_q $-linear $ \mathbb{F}_{q^t} $-codes of length $ n $ is given, where $ n $ is a positive integer coprime to $ q $. Then according to the structure of this kind of codes, we construct $ 60 $ optimal cyclic $ \mathbb{F}_q $-linear $ \mathbb{F}_{q^2} $-codes which have the same parameters as the MDS codes over $ \mathbb{F}_{q^2} $.
References:
[1] |
T. L. Alderson,
Extending MDS codes, Ann. Comb., 9 (2005), 125-135.
doi: 10.1007/s00026-005-0245-7. |
[2] |
I. Bouyukliev and J. Simonis,
Some new results on optimal codes over $\mathbb{F}_5$, Des. Codes Cryptogr., 30 (2003), 97-111.
doi: 10.1023/A:1024763410967. |
[3] |
S. Bouyuklieva and P. R. J. Östergảrd,
New constructions of optimal self-dual binary codes of length 54, Des. Codes Cryptogr., 41 (2006), 101-109.
doi: 10.1007/s10623-006-0018-2. |
[4] |
W. Bosma, J. Cannon and C. Playoust,
The Magma algebra system, J. Symb. Comput., 24 (1997), 235-265.
|
[5] |
Y. L. Cao and Y. Gao,
Repeated root cyclic $\mathbb{F}_q$-linear codes over $\mathbb{F}_{q^l}$, Finite Fields Appl., 31 (2015), 202-227.
doi: 10.1016/j.ffa.2014.10.003. |
[6] |
Y. L. Cao, X. X. Chang and Y. Cao,
Constacyclic $\mathbb{F}_q$-linear codes over $\mathbb{F}_{q^l}$, Appl. Algebra Engrg. Comm. Comput., 26 (2015), 369-388.
doi: 10.1007/s00200-015-0257-4. |
[7] |
Y. L. Cao, J. Gao and F.-W. Fu,
Semisimple multivariable $\mathbb{F}_q$-linear codes over $\mathbb{F}_{q^l}$, Des. Codes Cryptogr., 77 (2015), 153-177.
doi: 10.1007/s10623-014-9994-9. |
[8] |
B. C. Chen and H. W. Liu,
New constructions of MDS codes with complementary duals, IEEE Trans. Inform. Theory, 64 (2018), 5776-5782.
doi: 10.1109/TIT.2017.2748955. |
[9] |
B. K. Dey and B. S. Rajan,
$\mathbb{F}_q$-linear cyclic codes over $\mathbb{F}_{q^m}$: DFT approach, Des. Codes Cryptogr., 34 (2005), 89-116.
doi: 10.1007/s10623-003-4196-x. |
[10] |
S. Dodunekov and I. Landgev,
On near-MDS codes, J. Geom., 54 (1995), 30-43.
doi: 10.1007/BF01222850. |
[11] |
R. Gabrys, E. Yaakobi, M. Blaum and P. H. Siegel,
Constructions of partial MDS codes over small fields, IEEE Internat. Symposium Inform. Theory, 65 (2019), 3692-3701.
doi: 10.1109/TIT.2018.2890201. |
[12] |
M. Grassl and T. A. Gulliver,
On self-dual MDS codes, IEEE Internat. Symposium Inform. Theory, (2008), 1954-1957.
|
[13] |
W. C. Huffman,
Cyclic $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes, Int. J. Inf. and Coding Theory, 1 (2010), 249-284.
doi: 10.1504/IJICOT.2010.032543. |
[14] |
W. C. Huffman,
Self-dual $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes with an automorphism of prime order, Adv. Math. Commun., 7 (2013), 57-90.
doi: 10.3934/amc.2013.7.57. |
[15] |
W. C. Huffman,
On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes, Adv. Math. Commun., 7 (2013), 349-378.
doi: 10.3934/amc.2013.7.349. |
[16] |
B. Hurley and T. Hurley,
Systems of MDS codes from units and idempotents, Discrete Math., 335 (2014), 81-91.
doi: 10.1016/j.disc.2014.07.010. |
[17] |
L. F. Jin, S. Ling, J. Q. Luo and C. P. Xing,
Application of classical Hermitian self-orthogonal MDS codes to quantum MDS codes, IEEE Trans. Inform. Theory, 56 (2010), 4735-4740.
doi: 10.1109/TIT.2010.2054174. |
[18] |
L. F. Jin and C. P. Xing,
New MDS self-dual codes from generalized Reed-Solomon codes, IEEE Trans. Inform. Theory, 63 (2017), 1434-1438.
doi: 10.1109/TIT.2016.2645759. |
[19] |
T. Maruta,
On the existence of cyclic and pseudo-cyclic MDS codes, Europ. J. Combinatorics, 19 (1998), 159-174.
doi: 10.1006/S0195-6698(97)90000-7. |
[20] |
R. M. Roth and G. Seroussi,
On cyclic MDS codes of length $q$ over $GF(q)$, IEEE Trans. Inform. Theory, 32 (1986), 284-285.
doi: 10.1109/TIT.1986.1057151. |
[21] |
R. M. Roth and G. Seroussi,
On generator matrices of MDS codes, IEEE Trans. Inform. Theory, 31 (1985), 826-830.
doi: 10.1109/TIT.1985.1057113. |
[22] |
M. J. Shi and P. Solé,
Optimal $p$-ary codes from one-weight and two-weight codes over $\mathbb{F}_p+v{\mathbb{F}_p}^*$, J. Syst. Sci. Complex., 28 (2015), 679-690.
doi: 10.1007/s11424-015-3265-3. |
[23] |
Z.-X. Wan,
Cyclic codes over Galois rings$^*$, Algebra Colloquium, 6 (1999), 291-304.
|
show all references
References:
[1] |
T. L. Alderson,
Extending MDS codes, Ann. Comb., 9 (2005), 125-135.
doi: 10.1007/s00026-005-0245-7. |
[2] |
I. Bouyukliev and J. Simonis,
Some new results on optimal codes over $\mathbb{F}_5$, Des. Codes Cryptogr., 30 (2003), 97-111.
doi: 10.1023/A:1024763410967. |
[3] |
S. Bouyuklieva and P. R. J. Östergảrd,
New constructions of optimal self-dual binary codes of length 54, Des. Codes Cryptogr., 41 (2006), 101-109.
doi: 10.1007/s10623-006-0018-2. |
[4] |
W. Bosma, J. Cannon and C. Playoust,
The Magma algebra system, J. Symb. Comput., 24 (1997), 235-265.
|
[5] |
Y. L. Cao and Y. Gao,
Repeated root cyclic $\mathbb{F}_q$-linear codes over $\mathbb{F}_{q^l}$, Finite Fields Appl., 31 (2015), 202-227.
doi: 10.1016/j.ffa.2014.10.003. |
[6] |
Y. L. Cao, X. X. Chang and Y. Cao,
Constacyclic $\mathbb{F}_q$-linear codes over $\mathbb{F}_{q^l}$, Appl. Algebra Engrg. Comm. Comput., 26 (2015), 369-388.
doi: 10.1007/s00200-015-0257-4. |
[7] |
Y. L. Cao, J. Gao and F.-W. Fu,
Semisimple multivariable $\mathbb{F}_q$-linear codes over $\mathbb{F}_{q^l}$, Des. Codes Cryptogr., 77 (2015), 153-177.
doi: 10.1007/s10623-014-9994-9. |
[8] |
B. C. Chen and H. W. Liu,
New constructions of MDS codes with complementary duals, IEEE Trans. Inform. Theory, 64 (2018), 5776-5782.
doi: 10.1109/TIT.2017.2748955. |
[9] |
B. K. Dey and B. S. Rajan,
$\mathbb{F}_q$-linear cyclic codes over $\mathbb{F}_{q^m}$: DFT approach, Des. Codes Cryptogr., 34 (2005), 89-116.
doi: 10.1007/s10623-003-4196-x. |
[10] |
S. Dodunekov and I. Landgev,
On near-MDS codes, J. Geom., 54 (1995), 30-43.
doi: 10.1007/BF01222850. |
[11] |
R. Gabrys, E. Yaakobi, M. Blaum and P. H. Siegel,
Constructions of partial MDS codes over small fields, IEEE Internat. Symposium Inform. Theory, 65 (2019), 3692-3701.
doi: 10.1109/TIT.2018.2890201. |
[12] |
M. Grassl and T. A. Gulliver,
On self-dual MDS codes, IEEE Internat. Symposium Inform. Theory, (2008), 1954-1957.
|
[13] |
W. C. Huffman,
Cyclic $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes, Int. J. Inf. and Coding Theory, 1 (2010), 249-284.
doi: 10.1504/IJICOT.2010.032543. |
[14] |
W. C. Huffman,
Self-dual $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes with an automorphism of prime order, Adv. Math. Commun., 7 (2013), 57-90.
doi: 10.3934/amc.2013.7.57. |
[15] |
W. C. Huffman,
On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes, Adv. Math. Commun., 7 (2013), 349-378.
doi: 10.3934/amc.2013.7.349. |
[16] |
B. Hurley and T. Hurley,
Systems of MDS codes from units and idempotents, Discrete Math., 335 (2014), 81-91.
doi: 10.1016/j.disc.2014.07.010. |
[17] |
L. F. Jin, S. Ling, J. Q. Luo and C. P. Xing,
Application of classical Hermitian self-orthogonal MDS codes to quantum MDS codes, IEEE Trans. Inform. Theory, 56 (2010), 4735-4740.
doi: 10.1109/TIT.2010.2054174. |
[18] |
L. F. Jin and C. P. Xing,
New MDS self-dual codes from generalized Reed-Solomon codes, IEEE Trans. Inform. Theory, 63 (2017), 1434-1438.
doi: 10.1109/TIT.2016.2645759. |
[19] |
T. Maruta,
On the existence of cyclic and pseudo-cyclic MDS codes, Europ. J. Combinatorics, 19 (1998), 159-174.
doi: 10.1006/S0195-6698(97)90000-7. |
[20] |
R. M. Roth and G. Seroussi,
On cyclic MDS codes of length $q$ over $GF(q)$, IEEE Trans. Inform. Theory, 32 (1986), 284-285.
doi: 10.1109/TIT.1986.1057151. |
[21] |
R. M. Roth and G. Seroussi,
On generator matrices of MDS codes, IEEE Trans. Inform. Theory, 31 (1985), 826-830.
doi: 10.1109/TIT.1985.1057113. |
[22] |
M. J. Shi and P. Solé,
Optimal $p$-ary codes from one-weight and two-weight codes over $\mathbb{F}_p+v{\mathbb{F}_p}^*$, J. Syst. Sci. Complex., 28 (2015), 679-690.
doi: 10.1007/s11424-015-3265-3. |
[23] |
Z.-X. Wan,
Cyclic codes over Galois rings$^*$, Algebra Colloquium, 6 (1999), 291-304.
|
|
Basis | Hamming weight enumerator | |
|
|||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
|
Basis | Hamming weight enumerator | |
|
|||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
[1] |
W. Cary Huffman. On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes. Advances in Mathematics of Communications, 2013, 7 (3) : 349-378. doi: 10.3934/amc.2013.7.349 |
[2] |
W. Cary Huffman. Self-dual $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes with an automorphism of prime order. Advances in Mathematics of Communications, 2013, 7 (1) : 57-90. doi: 10.3934/amc.2013.7.57 |
[3] |
Fatmanur Gursoy, Irfan Siap, Bahattin Yildiz. Construction of skew cyclic codes over $\mathbb F_q+v\mathbb F_q$. Advances in Mathematics of Communications, 2014, 8 (3) : 313-322. doi: 10.3934/amc.2014.8.313 |
[4] |
Sara D. Cardell, Joan-Josep Climent, Daniel Panario, Brett Stevens. A construction of $ \mathbb{F}_2 $-linear cyclic, MDS codes. Advances in Mathematics of Communications, 2020, 14 (3) : 437-453. doi: 10.3934/amc.2020047 |
[5] |
Wei Qi. On the polycyclic codes over $ \mathbb{F}_q+u\mathbb{F}_q $. Advances in Mathematics of Communications, 2022 doi: 10.3934/amc.2022015 |
[6] |
W. Cary Huffman. Additive cyclic codes over $\mathbb F_4$. Advances in Mathematics of Communications, 2008, 2 (3) : 309-343. doi: 10.3934/amc.2008.2.309 |
[7] |
W. Cary Huffman. Additive cyclic codes over $\mathbb F_4$. Advances in Mathematics of Communications, 2007, 1 (4) : 427-459. doi: 10.3934/amc.2007.1.427 |
[8] |
Karim Samei, Arezoo Soufi. Quadratic residue codes over $\mathbb{F}_{p^r}+{u_1}\mathbb{F}_{p^r}+{u_2}\mathbb{F}_{p^r}+...+{u_t}\mathbb{F}_ {p^r}$. Advances in Mathematics of Communications, 2017, 11 (4) : 791-804. doi: 10.3934/amc.2017058 |
[9] |
Roghayeh Mohammadi Hesari, Mahboubeh Hosseinabadi, Rashid Rezaei, Karim Samei. $\mathbb{F}_{p^{m}}\mathbb{F}_{p^{m}}{[u^2]}$-additive skew cyclic codes of length $2p^s $. Advances in Mathematics of Communications, 2022 doi: 10.3934/amc.2022023 |
[10] |
Evangeline P. Bautista, Philippe Gaborit, Jon-Lark Kim, Judy L. Walker. s-extremal additive $\mathbb F_4$ codes. Advances in Mathematics of Communications, 2007, 1 (1) : 111-130. doi: 10.3934/amc.2007.1.111 |
[11] |
Olof Heden, Faina I. Solov’eva. Partitions of $\mathbb F$n into non-parallel Hamming codes. Advances in Mathematics of Communications, 2009, 3 (4) : 385-397. doi: 10.3934/amc.2009.3.385 |
[12] |
Taher Abualrub, Steven T. Dougherty. Additive and linear conjucyclic codes over $ {\mathbb{F}}_4 $. Advances in Mathematics of Communications, 2022, 16 (1) : 1-15. doi: 10.3934/amc.2020096 |
[13] |
Arezoo Soufi Karbaski, Taher Abualrub, Nuh Aydin, Peihan Liu. Additive polycyclic codes over $ \mathbb{F}_{4} $ induced by binary vectors and some optimal codes. Advances in Mathematics of Communications, 2022 doi: 10.3934/amc.2022004 |
[14] |
Fanghui Ma, Jian Gao, Fang-Wei Fu. New non-binary quantum codes from constacyclic codes over $ \mathbb{F}_q[u,v]/\langle u^{2}-1, v^{2}-v, uv-vu\rangle $. Advances in Mathematics of Communications, 2019, 13 (3) : 421-434. doi: 10.3934/amc.2019027 |
[15] |
Padmapani Seneviratne, Martianus Frederic Ezerman. New quantum codes from metacirculant graphs via self-dual additive $\mathbb{F}_4$-codes. Advances in Mathematics of Communications, 2022 doi: 10.3934/amc.2021073 |
[16] |
T. Aaron Gulliver, Masaaki Harada, Hiroki Miyabayashi. Double circulant and quasi-twisted self-dual codes over $\mathbb F_5$ and $\mathbb F_7$. Advances in Mathematics of Communications, 2007, 1 (2) : 223-238. doi: 10.3934/amc.2007.1.223 |
[17] |
Hongwei Liu, Jingge Liu. On $ \sigma $-self-orthogonal constacyclic codes over $ \mathbb F_{p^m}+u\mathbb F_{p^m} $. Advances in Mathematics of Communications, 2022, 16 (3) : 643-665. doi: 10.3934/amc.2020127 |
[18] |
Minjia Shi, Yaqi Lu. Cyclic DNA codes over $ \mathbb{F}_2[u,v]/\langle u^3, v^2-v, vu-uv\rangle$. Advances in Mathematics of Communications, 2019, 13 (1) : 157-164. doi: 10.3934/amc.2019009 |
[19] |
David Keyes. $\mathbb F_p$-codes, theta functions and the Hamming weight MacWilliams identity. Advances in Mathematics of Communications, 2012, 6 (4) : 401-418. doi: 10.3934/amc.2012.6.401 |
[20] |
Delphine Boucher. Construction and number of self-dual skew codes over $\mathbb{F}_{p^2}$. Advances in Mathematics of Communications, 2016, 10 (4) : 765-795. doi: 10.3934/amc.2016040 |
2021 Impact Factor: 1.015
Tools
Metrics
Other articles
by authors
[Back to Top]