
-
Previous Article
The $[46, 9, 20]_2$ code is unique
- AMC Home
- This Issue
-
Next Article
Some optimal cyclic $ \mathbb{F}_q $-linear $ \mathbb{F}_{q^t} $-codes
Ironwood meta key agreement and authentication protocol
100 Beard Sawmill Rd, Suite 350, Shelton, CT 06484, USA |
Number theoretic public-key solutions, currently used in many applications worldwide, will be subject to various quantum attacks, making them less attractive for longer-term use. Certain group theoretic constructs are now showing promise in providing quantum-resistant cryptographic primitives, and may provide suitable alternatives for those looking to address known quantum attacks. In this paper, we introduce a new protocol called a Meta Key Agreement and Authentication Protocol (MKAAP) that has some characteristics of a public-key solution and some of a shared-key solution. Specifically, it has the deployment benefits of a public-key system, allowing two entities that have never met before to authenticate without requiring real-time access to a third-party, but does require secure provisioning of key material from a trusted key distribution system (similar to a symmetric system) prior to deployment. We then describe a specific MKAAP instance, the Ironwood MKAAP, discuss its security, and show how it resists certain quantum attacks such as Shor's algorithm or Grover's quantum search algorithm. We also show Ironwood implemented on several "internet of things" (IoT devices), measure its performance, and show how it performs significantly better than ECC using fewer device resources.
References:
[1] |
I. Anshel, M. Anshel, D. Goldfeld and S. Lemieux,
Key agreement, the Algebraic Eraser$^{TM}$, and lightweight cryptography, Algebraic Methods in Cryptography, Contemp. Math., Amer. Math. Soc., Providence, RI, 418 (2006), 1-34.
doi: 10.1090/conm/418/07943. |
[2] |
I. Anshel, D. Atkins, D. Goldfeld and P. E. Gunnells, Defeating the Ben-Zvi, Blackburn, and Tsaban Attack on the Algebraic Eraser, arXiv: 1601.04780v1 [cs.CR]. |
[3] |
I. Anshel, D. Atkins, D. Goldfeld and P. E. Gunnells, WalnutDSA$^{TM}$: A Lightweight Quantum Resistant Digital Signature Algorithm, https://eprint.iacr.org/2017/058.pdf. |
[4] |
I. Anshel, M. Anshel and D. Goldfeld,
An algebraic method for public-key cryptography, Math. Res. Lett., 6 (1999), 287-291.
doi: 10.4310/MRL.1999.v6.n3.a3. |
[5] |
E. Artin,
The theory of braids, Annals of Math., 48 (1947), 101-126.
doi: 10.2307/1969218. |
[6] |
D. Atkins and D. Goldfeld, Addressing the algebraic eraser over the air protocol, https://eprint.iacr.org/2016/205.pdf. |
[7] |
A. Ben-Zvi, S. R. Blackburn and B. Tsaban, A practical cryptanalysis of the algebraic eraser, Advances in Cryptology - CRYPTO 2016, Part I, Lecture Notes in Comput. Sci., Springer, Berlin, 9814 (2016), 179–189. http://eprint.iacr.org/2015/1102.
doi: 10.1007/978-3-662-53018-4_7. |
[8] |
S. R. Blackburn and M. J. B. Robshaw, On the security of the algebraic eraser tag authentication protocol, Applied Cryptography and Network Security, Lecture Notes in Comput. Sci., Springer, 9696 (2016), 3–17. http://eprint.iacr.org/2016/091.
doi: 10.1007/978-3-319-39555-5_1. |
[9] |
M. Düll, B. Haase, G. Hinterwälder, M. Hutter, C. Paar, A. H. Sánchez and P. Schwabe, High-speed Curve25519 on 8-bit, 16-bit, and 32-bit microcontrollers, https://eprint.iacr.org/2015/343.pdf. |
[10] |
D. Garber, S. Kaplan, M. Teicher, B. Tsaban and U. Vishne,
Length-based conjugacy search in the braid group, Algebraic Methods in Cryptography, Contemp. Math., Amer. Math. Soc., Providence, RI, 418 (2006), 75-87.
doi: 10.1090/conm/418/07947. |
[11] |
V. Gebhardt,
A new approach to the conjugacy problem in Garside groups, J. Algebra, 292 (2005), 282-302.
doi: 10.1016/j.jalgebra.2005.02.002. |
[12] |
D. Goldfeld and P. E. Gunnells, Defeating the Kalka-Teicher-Tsaban linear algebra attack on the Algebraic Eraser, (2012), arXiv: 1202.0598. |
[13] |
M. I. González Vasco, S. Magliveras and R. Steinwandt, Group-Theoretic Cryptography, Chapman & Hall/CRC Cryptography and Network Security, CRC Press, Boca Raton, FL, 2015.
![]() ![]() |
[14] |
L. K. Grover,
A fast quantum mechanical algorithm for database search, Proceedings, 28th Annual ACM, Symposium on the Theory of Computing, ACM, New York, (1996), 212-219.
doi: 10.1145/237814.237866. |
[15] |
P. E. Gunnells, On the cryptanalysis of the generalized simultaneous conjugacy search problem and the security of the Algebraic Eraser, arXiv: 1105.1141v1 [cs.CR]. |
[16] |
D. Hofheinz and R. Steinwandt,
A practical attack on some braid group based cryptographic primitives, Public Key Cryptography—PKC 2003, Lecture Notes in Comput. Sci., Springer, Berlin, 2567 (2002), 187-198.
doi: 10.1007/3-540-36288-6_14. |
[17] |
A. Kalka, M. Teicher and B. Tsaban,
Short expressions of permutations as products and cryptanalysis of the Algebraic Eraser, Advances in Applied Mathematics, 49 (2012), 57-76.
doi: 10.1016/j.aam.2012.03.001. |
[18] |
K. H. Ko, S. J. Lee, J. H. Cheon, J. W. Han, J. Kang and C. Park,
New public-key cryptosystem using braid groups, Advances in Cryptology - CRYPTO 2000, Lecture Notes in Computer Science, Springer, Berlin, 1880 (2000), 166-183.
doi: 10.1007/3-540-44598-6_10. |
[19] |
C. Lomont, The hidden subgroup problem - review and open problems, (2004), arXiv: quant-ph/0411037. |
[20] |
H. R. Morton,
The multivariable Alexander polynomial for a closed braid, Low-dimensional topology, Contemp. Math., Amer. Math. Soc., Providence, RI, 233 (1999), 167-172.
doi: 10.1090/conm/233/03427. |
[21] |
C. Mulland and B. Tsaban, $ \rm SL _2$ homomorphic hash functions: Worst case to average case reduction and short collision search, Des. Codes Cryptogr., 81 (2016), 83–107, arXiv: 1306.5646v3 [cs.CR].
doi: 10.1007/s10623-015-0129-8. |
[22] |
A. D. Myasnikov and A. Ushakov,
Cryptanalysis of the Anshel-Anshel-Goldfeld-Lemieux key agreement protocol, Groups Complex. Cryptol., 1 (2009), 63-75.
doi: 10.1515/GCC.2009.63. |
[23] |
A. Myasnikov, V. Shpilrain and A. Ushakov, Group-Based Cryptography, Advanced Courses in Mathematics, CRM Barcelona Birkhäuser, Basel, 2008. |
[24] |
P. W. Shor,
Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, SIAM J. Computing, 26 (1997), 1484-1509.
doi: 10.1137/S0097539795293172. |
[25] |
G. Zémor,
Hash functions and graphs with large girths, Eurocrypt '91, Lecture Notes in Computer Science, 547 (1991), 508-511.
|
show all references
References:
[1] |
I. Anshel, M. Anshel, D. Goldfeld and S. Lemieux,
Key agreement, the Algebraic Eraser$^{TM}$, and lightweight cryptography, Algebraic Methods in Cryptography, Contemp. Math., Amer. Math. Soc., Providence, RI, 418 (2006), 1-34.
doi: 10.1090/conm/418/07943. |
[2] |
I. Anshel, D. Atkins, D. Goldfeld and P. E. Gunnells, Defeating the Ben-Zvi, Blackburn, and Tsaban Attack on the Algebraic Eraser, arXiv: 1601.04780v1 [cs.CR]. |
[3] |
I. Anshel, D. Atkins, D. Goldfeld and P. E. Gunnells, WalnutDSA$^{TM}$: A Lightweight Quantum Resistant Digital Signature Algorithm, https://eprint.iacr.org/2017/058.pdf. |
[4] |
I. Anshel, M. Anshel and D. Goldfeld,
An algebraic method for public-key cryptography, Math. Res. Lett., 6 (1999), 287-291.
doi: 10.4310/MRL.1999.v6.n3.a3. |
[5] |
E. Artin,
The theory of braids, Annals of Math., 48 (1947), 101-126.
doi: 10.2307/1969218. |
[6] |
D. Atkins and D. Goldfeld, Addressing the algebraic eraser over the air protocol, https://eprint.iacr.org/2016/205.pdf. |
[7] |
A. Ben-Zvi, S. R. Blackburn and B. Tsaban, A practical cryptanalysis of the algebraic eraser, Advances in Cryptology - CRYPTO 2016, Part I, Lecture Notes in Comput. Sci., Springer, Berlin, 9814 (2016), 179–189. http://eprint.iacr.org/2015/1102.
doi: 10.1007/978-3-662-53018-4_7. |
[8] |
S. R. Blackburn and M. J. B. Robshaw, On the security of the algebraic eraser tag authentication protocol, Applied Cryptography and Network Security, Lecture Notes in Comput. Sci., Springer, 9696 (2016), 3–17. http://eprint.iacr.org/2016/091.
doi: 10.1007/978-3-319-39555-5_1. |
[9] |
M. Düll, B. Haase, G. Hinterwälder, M. Hutter, C. Paar, A. H. Sánchez and P. Schwabe, High-speed Curve25519 on 8-bit, 16-bit, and 32-bit microcontrollers, https://eprint.iacr.org/2015/343.pdf. |
[10] |
D. Garber, S. Kaplan, M. Teicher, B. Tsaban and U. Vishne,
Length-based conjugacy search in the braid group, Algebraic Methods in Cryptography, Contemp. Math., Amer. Math. Soc., Providence, RI, 418 (2006), 75-87.
doi: 10.1090/conm/418/07947. |
[11] |
V. Gebhardt,
A new approach to the conjugacy problem in Garside groups, J. Algebra, 292 (2005), 282-302.
doi: 10.1016/j.jalgebra.2005.02.002. |
[12] |
D. Goldfeld and P. E. Gunnells, Defeating the Kalka-Teicher-Tsaban linear algebra attack on the Algebraic Eraser, (2012), arXiv: 1202.0598. |
[13] |
M. I. González Vasco, S. Magliveras and R. Steinwandt, Group-Theoretic Cryptography, Chapman & Hall/CRC Cryptography and Network Security, CRC Press, Boca Raton, FL, 2015.
![]() ![]() |
[14] |
L. K. Grover,
A fast quantum mechanical algorithm for database search, Proceedings, 28th Annual ACM, Symposium on the Theory of Computing, ACM, New York, (1996), 212-219.
doi: 10.1145/237814.237866. |
[15] |
P. E. Gunnells, On the cryptanalysis of the generalized simultaneous conjugacy search problem and the security of the Algebraic Eraser, arXiv: 1105.1141v1 [cs.CR]. |
[16] |
D. Hofheinz and R. Steinwandt,
A practical attack on some braid group based cryptographic primitives, Public Key Cryptography—PKC 2003, Lecture Notes in Comput. Sci., Springer, Berlin, 2567 (2002), 187-198.
doi: 10.1007/3-540-36288-6_14. |
[17] |
A. Kalka, M. Teicher and B. Tsaban,
Short expressions of permutations as products and cryptanalysis of the Algebraic Eraser, Advances in Applied Mathematics, 49 (2012), 57-76.
doi: 10.1016/j.aam.2012.03.001. |
[18] |
K. H. Ko, S. J. Lee, J. H. Cheon, J. W. Han, J. Kang and C. Park,
New public-key cryptosystem using braid groups, Advances in Cryptology - CRYPTO 2000, Lecture Notes in Computer Science, Springer, Berlin, 1880 (2000), 166-183.
doi: 10.1007/3-540-44598-6_10. |
[19] |
C. Lomont, The hidden subgroup problem - review and open problems, (2004), arXiv: quant-ph/0411037. |
[20] |
H. R. Morton,
The multivariable Alexander polynomial for a closed braid, Low-dimensional topology, Contemp. Math., Amer. Math. Soc., Providence, RI, 233 (1999), 167-172.
doi: 10.1090/conm/233/03427. |
[21] |
C. Mulland and B. Tsaban, $ \rm SL _2$ homomorphic hash functions: Worst case to average case reduction and short collision search, Des. Codes Cryptogr., 81 (2016), 83–107, arXiv: 1306.5646v3 [cs.CR].
doi: 10.1007/s10623-015-0129-8. |
[22] |
A. D. Myasnikov and A. Ushakov,
Cryptanalysis of the Anshel-Anshel-Goldfeld-Lemieux key agreement protocol, Groups Complex. Cryptol., 1 (2009), 63-75.
doi: 10.1515/GCC.2009.63. |
[23] |
A. Myasnikov, V. Shpilrain and A. Ushakov, Group-Based Cryptography, Advanced Courses in Mathematics, CRM Barcelona Birkhäuser, Basel, 2008. |
[24] |
P. W. Shor,
Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, SIAM J. Computing, 26 (1997), 1484-1509.
doi: 10.1137/S0097539795293172. |
[25] |
G. Zémor,
Hash functions and graphs with large girths, Eurocrypt '91, Lecture Notes in Computer Science, 547 (1991), 508-511.
|


Artin Length | MSP430 | LPC1768 | |
2626 | 5272 | 6002668 | 2026216 |
2332 | 3580 | 4532480 | 1538472 |
2414 | 3944 | 4862464 | 1648742 |
3172 | 4266 | 5661952 | 1914009 |
2168 | 4514 | 5101824 | 1728545 |
3092 | 4698 | 5922048 | 2000312 |
2978 | 3968 | 5297664 | 1792959 |
2744 | 4420 | 5459456 | 1845502 |
2430 | 4762 | 5479424 | 1854446 |
2636 | 3600 | 4771840 | 1617670 |
2659.2 | 4302.4 | 5309182 | 1796687 |
Artin Length | MSP430 | LPC1768 | |
2626 | 5272 | 6002668 | 2026216 |
2332 | 3580 | 4532480 | 1538472 |
2414 | 3944 | 4862464 | 1648742 |
3172 | 4266 | 5661952 | 1914009 |
2168 | 4514 | 5101824 | 1728545 |
3092 | 4698 | 5922048 | 2000312 |
2978 | 3968 | 5297664 | 1792959 |
2744 | 4420 | 5459456 | 1845502 |
2430 | 4762 | 5479424 | 1854446 |
2636 | 3600 | 4771840 | 1617670 |
2659.2 | 4302.4 | 5309182 | 1796687 |
Artin Length | MSP430 | LPC1768 | CC2650 48Mhz | ||
25MHz | 48MHz | (SST 5) | (SST 2) | ||
2626 | 5272 | 240.1 | 42.2 | 42 | 42 |
2332 | 3580 | 181.3 | 32.2 | 32 | 32 |
2414 | 3944 | 194.5 | 34.3 | 34 | 35 |
3172 | 4266 | 226.5 | 39.9 | 40 | 40 |
2168 | 4514 | 204.1 | 36.0 | 36 | 36 |
3092 | 4698 | 236.9 | 41.2 | 42 | 42 |
2978 | 3968 | 211.9 | 37.4 | 37 | 37 |
2744 | 4420 | 218.4 | 38.4 | 38 | 39 |
2430 | 4762 | 219.2 | 38.6 | 39 | 39 |
2636 | 3600 | 190.9 | 33.7 | 34 | 34 |
2659.2 | 4302.4 | 212.4 | 37.4 | 37.4 | 37.6 |
Artin Length | MSP430 | LPC1768 | CC2650 48Mhz | ||
25MHz | 48MHz | (SST 5) | (SST 2) | ||
2626 | 5272 | 240.1 | 42.2 | 42 | 42 |
2332 | 3580 | 181.3 | 32.2 | 32 | 32 |
2414 | 3944 | 194.5 | 34.3 | 34 | 35 |
3172 | 4266 | 226.5 | 39.9 | 40 | 40 |
2168 | 4514 | 204.1 | 36.0 | 36 | 36 |
3092 | 4698 | 236.9 | 41.2 | 42 | 42 |
2978 | 3968 | 211.9 | 37.4 | 37 | 37 |
2744 | 4420 | 218.4 | 38.4 | 38 | 39 |
2430 | 4762 | 219.2 | 38.6 | 39 | 39 |
2636 | 3600 | 190.9 | 33.7 | 34 | 34 |
2659.2 | 4302.4 | 212.4 | 37.4 | 37.4 | 37.6 |
[1] |
Jintai Ding, Sihem Mesnager, Lih-Chung Wang. Letters for post-quantum cryptography standard evaluation. Advances in Mathematics of Communications, 2020, 14 (1) : i-i. doi: 10.3934/amc.2020012 |
[2] |
Gerhard Frey. Relations between arithmetic geometry and public key cryptography. Advances in Mathematics of Communications, 2010, 4 (2) : 281-305. doi: 10.3934/amc.2010.4.281 |
[3] |
Gérard Maze, Chris Monico, Joachim Rosenthal. Public key cryptography based on semigroup actions. Advances in Mathematics of Communications, 2007, 1 (4) : 489-507. doi: 10.3934/amc.2007.1.489 |
[4] |
Javier de la Cruz, Ricardo Villanueva-Polanco. Public key cryptography based on twisted dihedral group algebras. Advances in Mathematics of Communications, 2022 doi: 10.3934/amc.2022031 |
[5] |
Felipe Cabarcas, Daniel Cabarcas, John Baena. Efficient public-key operation in multivariate schemes. Advances in Mathematics of Communications, 2019, 13 (2) : 343-371. doi: 10.3934/amc.2019023 |
[6] |
Wenbo Fu, Debnath Narayan. Optimization algorithm for embedded Linux remote video monitoring system oriented to the internet of things (IOT). Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1341-1354. doi: 10.3934/dcdss.2019092 |
[7] |
Alar Leibak. On the number of factorizations of $ t $ mod $ N $ and the probability distribution of Diffie-Hellman secret keys for many users. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021029 |
[8] |
Lidong Chen, Dustin Moody. New mission and opportunity for mathematics researchers: Cryptography in the quantum era. Advances in Mathematics of Communications, 2020, 14 (1) : 161-169. doi: 10.3934/amc.2020013 |
[9] |
Anton Stolbunov. Constructing public-key cryptographic schemes based on class group action on a set of isogenous elliptic curves. Advances in Mathematics of Communications, 2010, 4 (2) : 215-235. doi: 10.3934/amc.2010.4.215 |
[10] |
Pedro Branco. A post-quantum UC-commitment scheme in the global random oracle model from code-based assumptions. Advances in Mathematics of Communications, 2021, 15 (1) : 113-130. doi: 10.3934/amc.2020046 |
[11] |
Ramprasad Sarkar, Mriganka Mandal, Sourav Mukhopadhyay. Quantum-safe identity-based broadcast encryption with provable security from multivariate cryptography. Advances in Mathematics of Communications, 2022 doi: 10.3934/amc.2022026 |
[12] |
Florian Luca, Igor E. Shparlinski. On finite fields for pairing based cryptography. Advances in Mathematics of Communications, 2007, 1 (3) : 281-286. doi: 10.3934/amc.2007.1.281 |
[13] |
Diego F. Aranha, Ricardo Dahab, Julio López, Leonardo B. Oliveira. Efficient implementation of elliptic curve cryptography in wireless sensors. Advances in Mathematics of Communications, 2010, 4 (2) : 169-187. doi: 10.3934/amc.2010.4.169 |
[14] |
Andreas Klein. How to say yes, no and maybe with visual cryptography. Advances in Mathematics of Communications, 2008, 2 (3) : 249-259. doi: 10.3934/amc.2008.2.249 |
[15] |
Anna-Lena Horlemann-Trautmann, Violetta Weger. Information set decoding in the Lee metric with applications to cryptography. Advances in Mathematics of Communications, 2021, 15 (4) : 677-699. doi: 10.3934/amc.2020089 |
[16] |
Vikas Srivastava, Sumit Kumar Debnath, Pantelimon Stǎnicǎ, Saibal Kumar Pal. A multivariate identity-based broadcast encryption with applications to the internet of things. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021050 |
[17] |
Hanyu Cao, Meiying Zhang, Huanxi Cai, Wei Gong, Min Su, Bin Li. A zero-forcing beamforming based time switching protocol for wireless powered internet of things system. Journal of Industrial and Management Optimization, 2020, 16 (6) : 2913-2922. doi: 10.3934/jimo.2019086 |
[18] |
Jian-Wu Xue, Xiao-Kun Xu, Feng Zhang. Big data dynamic compressive sensing system architecture and optimization algorithm for internet of things. Discrete and Continuous Dynamical Systems - S, 2015, 8 (6) : 1401-1414. doi: 10.3934/dcdss.2015.8.1401 |
[19] |
Joan-Josep Climent, Juan Antonio López-Ramos. Public key protocols over the ring $E_{p}^{(m)}$. Advances in Mathematics of Communications, 2016, 10 (4) : 861-870. doi: 10.3934/amc.2016046 |
[20] |
Yu-Chi Chen. Security analysis of public key encryption with filtered equality test. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021053 |
2021 Impact Factor: 1.015
Tools
Article outline
Figures and Tables
[Back to Top]