-
Previous Article
$ s $-PD-sets for codes from projective planes $ \mathrm{PG}(2,2^h) $, $ 5 \leq h\leq 9 $
- AMC Home
- This Issue
-
Next Article
Ironwood meta key agreement and authentication protocol
The $[46, 9, 20]_2$ code is unique
Mathematisches Institut, Universität Bayreuth, D-95440 Bayreuth, Germany |
The minimum distance of all binary linear codes with dimension at most eight is known. The smallest open case for dimension nine is length $ n = 46 $ with known bounds $ 19\le d\le 20 $. Here we present a $ [46,9,20]_2 $ code and show its uniqueness. Interestingly enough, this unique optimal code is asymmetric, i.e., it has a trivial automorphism group. Additionally, we show the non-existence of $ [47,10,20]_2 $ and $ [85,9,40]_2 $ codes.
References:
[1] |
L. D. Baumert and R. J. McEliece,
A note on the Griesmer bound, IEEE Transactions on Information Theory, IT-19 (1973), 134-135.
doi: 10.1109/tit.1973.1054939. |
[2] |
I. Bouyukliev, D. B. Jaffe and V. Vavrek,
The smallest length of eight-dimensional binary linear codes with prescribed minimum distance, IEEE Transactions on Information Theory, 46 (2000), 1539-1544.
doi: 10.1109/18.850690. |
[3] |
I. G. Bouyukliev,
What is $Q$-extension?, Serdica Journal of Computing, 1 (2007), 115-130.
|
[4] |
I. Bouyukliev and D. B. Jaffe,
Optimal binary linear codes of dimension at most seven, Discrete Mathematics, 226 (2001), 51-70.
doi: 10.1016/S0012-365X(00)00125-4. |
[5] |
S. Dodunekov, S. Guritman and J. Simonis,
Some new results on the minimum length of binary linear codes of dimension nine, IEEE Transactions on Information Theory, 45 (1999), 2543-2546.
doi: 10.1109/18.796403. |
[6] |
M. Grassl, Bounds on the minimum distance of linear codes and quantum codes, Online available at: http://www.codetables.de, (2007), Accessed on 2019-04-04. |
[7] |
J. H. Griesmer,
A bound for error-correcting codes, IBM Journal of Research and Development, 4 (1960), 532-542.
doi: 10.1147/rd.45.0532. |
[8] |
S. Kurz, Lincode - computer classification of linear codes, arXiv: 1912.09357. |
[9] |
F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes. II, North-Holland Mathematical Library, Vol. 16. North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977. |
[10] |
J. Simonis,
Restrictions on the weight distribution of binary linear codes imposed by the structure of reed-muller codes, IEEE transactions on Information Theory, 40 (1994), 194-196.
doi: 10.1109/18.272480. |
[11] |
J. Simonis,
The $[23, 14, 5]$ Wagner code is unique, Discrete Mathematics, 213 (2000), 269-282.
doi: 10.1016/S0012-365X(99)00187-9. |
[12] |
H. C. A. van Tilborg,
The smallest length of binary $7$-dimensional linear codes with prescribed minimum distance, Discrete Mathematics, 33 (1981), 197-207.
doi: 10.1016/0012-365X(81)90166-7. |
[13] |
H. N. Ward,
Divisible codes - a survey, Serdica Mathematical Journal, 27 (2001), 263-278.
|
show all references
References:
[1] |
L. D. Baumert and R. J. McEliece,
A note on the Griesmer bound, IEEE Transactions on Information Theory, IT-19 (1973), 134-135.
doi: 10.1109/tit.1973.1054939. |
[2] |
I. Bouyukliev, D. B. Jaffe and V. Vavrek,
The smallest length of eight-dimensional binary linear codes with prescribed minimum distance, IEEE Transactions on Information Theory, 46 (2000), 1539-1544.
doi: 10.1109/18.850690. |
[3] |
I. G. Bouyukliev,
What is $Q$-extension?, Serdica Journal of Computing, 1 (2007), 115-130.
|
[4] |
I. Bouyukliev and D. B. Jaffe,
Optimal binary linear codes of dimension at most seven, Discrete Mathematics, 226 (2001), 51-70.
doi: 10.1016/S0012-365X(00)00125-4. |
[5] |
S. Dodunekov, S. Guritman and J. Simonis,
Some new results on the minimum length of binary linear codes of dimension nine, IEEE Transactions on Information Theory, 45 (1999), 2543-2546.
doi: 10.1109/18.796403. |
[6] |
M. Grassl, Bounds on the minimum distance of linear codes and quantum codes, Online available at: http://www.codetables.de, (2007), Accessed on 2019-04-04. |
[7] |
J. H. Griesmer,
A bound for error-correcting codes, IBM Journal of Research and Development, 4 (1960), 532-542.
doi: 10.1147/rd.45.0532. |
[8] |
S. Kurz, Lincode - computer classification of linear codes, arXiv: 1912.09357. |
[9] |
F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes. II, North-Holland Mathematical Library, Vol. 16. North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977. |
[10] |
J. Simonis,
Restrictions on the weight distribution of binary linear codes imposed by the structure of reed-muller codes, IEEE transactions on Information Theory, 40 (1994), 194-196.
doi: 10.1109/18.272480. |
[11] |
J. Simonis,
The $[23, 14, 5]$ Wagner code is unique, Discrete Mathematics, 213 (2000), 269-282.
doi: 10.1016/S0012-365X(99)00187-9. |
[12] |
H. C. A. van Tilborg,
The smallest length of binary $7$-dimensional linear codes with prescribed minimum distance, Discrete Mathematics, 33 (1981), 197-207.
doi: 10.1016/0012-365X(81)90166-7. |
[13] |
H. N. Ward,
Divisible codes - a survey, Serdica Mathematical Journal, 27 (2001), 263-278.
|
k/n | 20 | 24 | 28 | 30 | 32 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 |
1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | ||||||
2 | 1 | 1 | 2 | 0 | 3 | 0 | 3 | 0 | ||||||||
3 | 1 | 1 | 2 | 4 | 6 | 9 | ||||||||||
4 | 1 | 4 | 13 | 26 | ||||||||||||
5 | 3 | 15 | 163 | |||||||||||||
6 | 24 | 3649 | ||||||||||||||
7 | 5 | 337794 |
k/n | 20 | 24 | 28 | 30 | 32 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 |
1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | ||||||
2 | 1 | 1 | 2 | 0 | 3 | 0 | 3 | 0 | ||||||||
3 | 1 | 1 | 2 | 4 | 6 | 9 | ||||||||||
4 | 1 | 4 | 13 | 26 | ||||||||||||
5 | 3 | 15 | 163 | |||||||||||||
6 | 24 | 3649 | ||||||||||||||
7 | 5 | 337794 |
k/n | 40 | 48 | 56 | 60 | 64 | 68 | 70 | 72 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 |
1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||||||
2 | 1 | 1 | 2 | 0 | 2 | 0 | 0 | 2 | 0 | 0 | ||||||||
3 | 1 | 1 | 2 | 0 | 3 | 0 | 5 | 0 | ||||||||||
4 | 1 | 1 | 2 | 3 | 6 | 10 | ||||||||||||
5 | 1 | 3 | 11 | 16 | ||||||||||||||
6 | 2 | 8 | 106 | |||||||||||||||
7 | 7 | 5613 |
k/n | 40 | 48 | 56 | 60 | 64 | 68 | 70 | 72 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 |
1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||||||
2 | 1 | 1 | 2 | 0 | 2 | 0 | 0 | 2 | 0 | 0 | ||||||||
3 | 1 | 1 | 2 | 0 | 3 | 0 | 5 | 0 | ||||||||||
4 | 1 | 1 | 2 | 3 | 6 | 10 | ||||||||||||
5 | 1 | 3 | 11 | 16 | ||||||||||||||
6 | 2 | 8 | 106 | |||||||||||||||
7 | 7 | 5613 |
3 | 4 | 5 | 6 | 7 | 8 | 9 | |
25773 | 48792 | 26091 | 5198 | 450 | 17 | 1 |
3 | 4 | 5 | 6 | 7 | 8 | 9 | |
25773 | 48792 | 26091 | 5198 | 450 | 17 | 1 |
[1] |
Michael Braun. On lattices, binary codes, and network codes. Advances in Mathematics of Communications, 2011, 5 (2) : 225-232. doi: 10.3934/amc.2011.5.225 |
[2] |
Yansheng Wu, Jong Yoon Hyun, Qin Yue. Optimal binary linear codes from posets of the disjoint union of two chains. Advances in Mathematics of Communications, 2022 doi: 10.3934/amc.2022042 |
[3] |
Axel Kohnert, Johannes Zwanzger. New linear codes with prescribed group of automorphisms found by heuristic search. Advances in Mathematics of Communications, 2009, 3 (2) : 157-166. doi: 10.3934/amc.2009.3.157 |
[4] |
Joaquim Borges, Ivan Yu. Mogilnykh, Josep Rifà, Faina I. Solov'eva. Structural properties of binary propelinear codes. Advances in Mathematics of Communications, 2012, 6 (3) : 329-346. doi: 10.3934/amc.2012.6.329 |
[5] |
Tatsuya Maruta, Yusuke Oya. On optimal ternary linear codes of dimension 6. Advances in Mathematics of Communications, 2011, 5 (3) : 505-520. doi: 10.3934/amc.2011.5.505 |
[6] |
Tsonka Baicheva, Iliya Bouyukliev. On the least covering radius of binary linear codes of dimension 6. Advances in Mathematics of Communications, 2010, 4 (3) : 399-404. doi: 10.3934/amc.2010.4.399 |
[7] |
Olof Heden, Fabio Pasticci, Thomas Westerbäck. On the existence of extended perfect binary codes with trivial symmetry group. Advances in Mathematics of Communications, 2009, 3 (3) : 295-309. doi: 10.3934/amc.2009.3.295 |
[8] |
Hans-Joachim Kroll, Sayed-Ghahreman Taherian, Rita Vincenti. Optimal antiblocking systems of information sets for the binary codes related to triangular graphs. Advances in Mathematics of Communications, 2022, 16 (1) : 169-183. doi: 10.3934/amc.2020107 |
[9] |
Yael Ben-Haim, Simon Litsyn. A new upper bound on the rate of non-binary codes. Advances in Mathematics of Communications, 2007, 1 (1) : 83-92. doi: 10.3934/amc.2007.1.83 |
[10] |
Olof Heden, Martin Hessler. On linear equivalence and Phelps codes. Advances in Mathematics of Communications, 2010, 4 (1) : 69-81. doi: 10.3934/amc.2010.4.69 |
[11] |
Adrian Korban, Serap Şahinkaya, Deniz Ustun. A novel genetic search scheme based on nature-inspired evolutionary algorithms for binary self-dual codes. Advances in Mathematics of Communications, 2022 doi: 10.3934/amc.2022033 |
[12] |
Steven T. Dougherty, Esengül Saltürk, Steve Szabo. Codes over local rings of order 16 and binary codes. Advances in Mathematics of Communications, 2016, 10 (2) : 379-391. doi: 10.3934/amc.2016012 |
[13] |
Rafael Arce-Nazario, Francis N. Castro, Jose Ortiz-Ubarri. On the covering radius of some binary cyclic codes. Advances in Mathematics of Communications, 2017, 11 (2) : 329-338. doi: 10.3934/amc.2017025 |
[14] |
Stefka Bouyuklieva, Anton Malevich, Wolfgang Willems. On the performance of binary extremal self-dual codes. Advances in Mathematics of Communications, 2011, 5 (2) : 267-274. doi: 10.3934/amc.2011.5.267 |
[15] |
Daniel Heinlein, Sascha Kurz. Binary subspace codes in small ambient spaces. Advances in Mathematics of Communications, 2018, 12 (4) : 817-839. doi: 10.3934/amc.2018048 |
[16] |
Arezoo Soufi Karbaski, Taher Abualrub, Nuh Aydin, Peihan Liu. Additive polycyclic codes over $ \mathbb{F}_{4} $ induced by binary vectors and some optimal codes. Advances in Mathematics of Communications, 2022 doi: 10.3934/amc.2022004 |
[17] |
Petr Lisoněk, Layla Trummer. Algorithms for the minimum weight of linear codes. Advances in Mathematics of Communications, 2016, 10 (1) : 195-207. doi: 10.3934/amc.2016.10.195 |
[18] |
Jean Creignou, Hervé Diet. Linear programming bounds for unitary codes. Advances in Mathematics of Communications, 2010, 4 (3) : 323-344. doi: 10.3934/amc.2010.4.323 |
[19] |
Steven Dougherty, Adrian Korban, Serap Șahinkaya, Deniz Ustun. Binary self-dual and LCD codes from generator matrices constructed from two group ring elements by a heuristic search scheme. Advances in Mathematics of Communications, 2022 doi: 10.3934/amc.2022036 |
[20] |
Fernando Hernando, Diego Ruano. New linear codes from matrix-product codes with polynomial units. Advances in Mathematics of Communications, 2010, 4 (3) : 363-367. doi: 10.3934/amc.2010.4.363 |
2020 Impact Factor: 0.935
Tools
Metrics
Other articles
by authors
[Back to Top]