August  2021, 15(3): 487-506. doi: 10.3934/amc.2020078

New optimal error-correcting codes for crosstalk avoidance in on-chip data buses

School of Mathematical Sciences, University of Science and Technology of China, Wu Wen-Tsun Key Laboratory of Mathematics, No. 96 Jinzhai Road, Hefei, 230026, Anhui, China

* Corresponding author: Xiande Zhang

Received  October 2019 Revised  March 2020 Published  August 2021 Early access  April 2020

Fund Project: The first author is supported by the Chinese Scholarship Council at USTC, China. The second author is supported by NSFC grant 11771419, and by the Fundamental Research Funds for the Central Universities

Codes that simultaneously provide for low power dissipation, cross-talk avoidance, and error correction in the ultra deep submicron/nanometer VLSI fabrication, were recently introduced by Chee et al. in 2015. Such codes were revealed to be closely related to balanced sampling plans avoiding adjacent units, which are widely used in the statistical design of experiments. In this paper, we construct a new family of optimal codes with such properties, by determining the maximum size of packing sampling plans avoiding certain units.

Citation: Muhammad Ajmal, Xiande Zhang. New optimal error-correcting codes for crosstalk avoidance in on-chip data buses. Advances in Mathematics of Communications, 2021, 15 (3) : 487-506. doi: 10.3934/amc.2020078
References:
[1]

D. Bertozzi, L. Benini and G. D. Micheli, Low power error resilient encoding for on-chip data buses, Proceedings of the Conference on Design, Automation and Test in Europe, IEEE Computer Society, (2002), 102–109. doi: 10.1109/DATE.2002.998256.

[2]

J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, American Elsevier Publishing Co., Inc., New York, 1976.

[3]

D. BryantY. X. ChangC. A. Rodger and R. Wei, Two-dimensional balanced sampling plans excluding contiguous units, Communications in Statistics-Theory and Methods, 31 (2002), 1441-1455.  doi: 10.1081/STA-120006078.

[4]

Y. M. Chee, C. J. Colbourn and A. C. H. Ling, Optimal memoryless encoding for low power off-chip data buses, 2006 IEEE/ACM International Conference on Computer Aided Design, IEEE, (2006), 369–374. doi: 10.1145/1233501.1233575.

[5]

Y. M. CheeC. J. ColbournA. C. H. LingH. Zhang and X. D. Zhang, Optimal low-power coding for error correction and crosstalk avoidance in on-chip data buses, Des. Codes Cryptogr., 77 (2015), 479-491.  doi: 10.1007/s10623-015-0084-4.

[6]

C. J. Colbourn and A. C. H. Ling, A class of partial triple systems with applications in survey sampling, Communications in Statistics-Theory and Methods, 27 (1998), 1009-1018.  doi: 10.1080/03610929808832141.

[7]

C. J. Colbourn and A. C. H. Ling, Balanced sampling plans with block size four excluding contiguous units, Australasian Journal of Combinatorics, 20 (1999), 37-46. doi: ajc.maths.uq.edu.au.

[8]

C. J. Duan, A. Tirumala and S. P. Khatri, Analysis and avoidance of cross-talk in on-chip buses, HOT 9 Interconnects Symposium on High Performance Interconnects, IEEE, (2001), 133–138. doi: 10.1109/HIS.2001.946705.

[9]

M. Favalli and C. Metra, Bus crosstalk fault-detection capabilities of error-detecting codes for on-line testing, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 7 (1999), 392-396.  doi: 10.1109/92.784100.

[10]

A. S. HedayatC. R. Rao and J. Stufken, Sampling plans excluding contiguous units, Sampling, Handbook of Statist., North-Holland, Amsterdam, 6 (1988), 575-583.  doi: 10.1016/0378-3758(88)90070-5.

[11]

A. HedayatC. Rao and J. Stufken, 24 Designs in survey sampling avoiding contiguous units, Handbook of Statistics, 6 (1988), 575-583.  doi: 10.1016/S0169-7161(88)06026-2.

[12]

I. IqbalM. H. TahirM. AkhtarS. S. A. GhazaliJ. Shabbir and N. S. Bukhari, Generalized polygonal designs with block size 3 and $\lambda = 1$, Journal of Statistical Planning and Inference, 139 (2009), 3200-3219.  doi: 10.1016/j.jspi.2009.02.018.

[13]

Z. Khan, T. Arslan and A. T. Erdogan, A dual low power and crosstalk immune encoding scheme for system-on-chip buses, International Workshop on Power and Timing Modeling, Optimization and Simulation, (2004), 585–592. doi: 10.1007/978-3-540-30205-6_60.

[14]

H. R. KongJ. G. Lei and Y. Zhang, On constructions for two dimensional balanced sampling plan excluding contiguous units with block size four, Discrete Mathematics, 308 (2008), 3729-3743.  doi: 10.1016/j.disc.2007.07.065.

[15]

F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes. I, North-Holland Mathematical Library, Vol. 16. North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977.

[16]

Y. Miao and L. Zhu, Existence of incomplete group divisible designs, J. Comb. Math. Comb. Comput., 6 (1989), 33-49. 

[17]

K. N. Patel and I. L. Markov, Error-correction and crosstalk avoidance in DSM busses, Proceedings of the 2003 International Workshop on System-level Interconnect Prediction, ACM, (2003), 9–14. doi: 10.1145/639929.639933.

[18]

S. RamprasadN. R. Shanbhag and I. N. Hajj, A coding framework for low-power address and data busses, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 7 (1999), 212-221.  doi: 10.1109/92.766748.

[19]

D. Rossi, V. E. S. van Dijk, R. P. Kleihorst, A. H. Nieuwland and C. Metra, Coding scheme for low energy consumption fault-tolerant bus, Proceedings of the Eighth IEEE International On-Line Testing Workshop (IOLTW), IEEE, (2002), 8–12. doi: 10.1109/OLT.2002.1030176.

[20]

J. E. Simpson, Langford sequences: Perfect and hooked, Discrete Mathematics, 44 (1983), 97-104.  doi: 10.1016/0012-365X(83)90008-0.

[21]

M. R. Stan and W. P. Burleson, Bus-invert coding for low-power I/O, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 3 (1995), 49-58.  doi: 10.1109/92.365453.

[22]

J. Stufken, Combinatorial and statistical aspects of sampling plans to avoid the selection of adjacent units, J. Combin. Info. Syst. Sci., 18 (1993), 149-160. 

[23]

J. Stufken and J. H. Wright, Polygonal designs with blocks of size $k \leq 10$, Metrika, 54 (2001), 179-184.  doi: 10.1007/s001840100137.

[24]

C.-L. SuC.-Y. Tsui and A. M. Despain, Saving power in the control path of embedded processors, IEEE Design Test of Computers, 11 (1994), 24-31.  doi: 10.1109/54.329448.

[25]

M. H. TahirI. IqbalM. Akhtar and J. Shabbir, Cyclic polygonal designs with block size 3 and $\lambda = 1$ for joint distance $\alpha = 6$ to $16$, Journal of Statistical Theory and Practice, 4 (2010), 203-220.  doi: 10.1080/15598608.2010.10411981.

[26]

B. Victor and K. Keutzer, Bus encoding to prevent crosstalk delay, Proceedings of the 2001 IEEE/ACM International Conference on Computer-Aided Design, (2001), 57–63. doi: 10.1109/ICCAD.2001.968598.

[27]

X. M. WangT. FengJ. Zhang and Y. Xu, Two-dimensional balanced sampling plans avoiding adjacent units, Discrete Mathematics, 338 (2015), 1624-1642.  doi: 10.1016/j.disc.2015.04.012.

[28]

J. H. Wright, Two-dimensional balanced sampling plans excluding adjacent units, Journal of Statistical Planning and Inference, 138 (2008), 145-153.  doi: 10.1016/j.jspi.2007.05.016.

[29]

J. H. Wright and J. Stufken, New balanced sampling plans excluding adjacent units, Journal of Statistical Planning and Inference, 138 (2008), 3326-3335.  doi: 10.1016/j.jspi.2006.10.020.

[30]

J. Zhang and Y. X. Chang, The spectrum of cyclic BSEC with block size three, Discrete Mathematics, 305 (2005), 312-322.  doi: 10.1016/j.disc.2005.06.030.

[31]

J. Zhang and Y. X. Chang, The spectrum of cyclic BSA $(v, 3, \lambda; \alpha)$ with $\alpha=2, 3$, Journal of Combinatorial Designs, 13 (2005), 313-335.  doi: 10.1002/jcd.20049.

[32]

J. Zhang and Y. X. Chang, The spectrum of {BSA ($v$, 3, $\lambda$; $\alpha$)} with $\alpha$= 2, 3, Journal of Combinatorial Designs, 15 (2007), 61-76.  doi: 10.1002/jcd.20104.

[33]

J. Zhang and Y. X. Chang, Existence of BSAs and cyclic BSAs of block size three, Journal of Statistical Planning and Inference, 137 (2007), 1496-1511.  doi: 10.1016/j.jspi.2006.02.009.

[34]

J. Zhang and Y. X. Chang, Partitionable sets and cyclic BSECs with block size four, Journal of Statistical Planning and Inference, 139 (2009), 1974-1979.  doi: 10.1016/j.jspi.2008.09.007.

show all references

References:
[1]

D. Bertozzi, L. Benini and G. D. Micheli, Low power error resilient encoding for on-chip data buses, Proceedings of the Conference on Design, Automation and Test in Europe, IEEE Computer Society, (2002), 102–109. doi: 10.1109/DATE.2002.998256.

[2]

J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, American Elsevier Publishing Co., Inc., New York, 1976.

[3]

D. BryantY. X. ChangC. A. Rodger and R. Wei, Two-dimensional balanced sampling plans excluding contiguous units, Communications in Statistics-Theory and Methods, 31 (2002), 1441-1455.  doi: 10.1081/STA-120006078.

[4]

Y. M. Chee, C. J. Colbourn and A. C. H. Ling, Optimal memoryless encoding for low power off-chip data buses, 2006 IEEE/ACM International Conference on Computer Aided Design, IEEE, (2006), 369–374. doi: 10.1145/1233501.1233575.

[5]

Y. M. CheeC. J. ColbournA. C. H. LingH. Zhang and X. D. Zhang, Optimal low-power coding for error correction and crosstalk avoidance in on-chip data buses, Des. Codes Cryptogr., 77 (2015), 479-491.  doi: 10.1007/s10623-015-0084-4.

[6]

C. J. Colbourn and A. C. H. Ling, A class of partial triple systems with applications in survey sampling, Communications in Statistics-Theory and Methods, 27 (1998), 1009-1018.  doi: 10.1080/03610929808832141.

[7]

C. J. Colbourn and A. C. H. Ling, Balanced sampling plans with block size four excluding contiguous units, Australasian Journal of Combinatorics, 20 (1999), 37-46. doi: ajc.maths.uq.edu.au.

[8]

C. J. Duan, A. Tirumala and S. P. Khatri, Analysis and avoidance of cross-talk in on-chip buses, HOT 9 Interconnects Symposium on High Performance Interconnects, IEEE, (2001), 133–138. doi: 10.1109/HIS.2001.946705.

[9]

M. Favalli and C. Metra, Bus crosstalk fault-detection capabilities of error-detecting codes for on-line testing, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 7 (1999), 392-396.  doi: 10.1109/92.784100.

[10]

A. S. HedayatC. R. Rao and J. Stufken, Sampling plans excluding contiguous units, Sampling, Handbook of Statist., North-Holland, Amsterdam, 6 (1988), 575-583.  doi: 10.1016/0378-3758(88)90070-5.

[11]

A. HedayatC. Rao and J. Stufken, 24 Designs in survey sampling avoiding contiguous units, Handbook of Statistics, 6 (1988), 575-583.  doi: 10.1016/S0169-7161(88)06026-2.

[12]

I. IqbalM. H. TahirM. AkhtarS. S. A. GhazaliJ. Shabbir and N. S. Bukhari, Generalized polygonal designs with block size 3 and $\lambda = 1$, Journal of Statistical Planning and Inference, 139 (2009), 3200-3219.  doi: 10.1016/j.jspi.2009.02.018.

[13]

Z. Khan, T. Arslan and A. T. Erdogan, A dual low power and crosstalk immune encoding scheme for system-on-chip buses, International Workshop on Power and Timing Modeling, Optimization and Simulation, (2004), 585–592. doi: 10.1007/978-3-540-30205-6_60.

[14]

H. R. KongJ. G. Lei and Y. Zhang, On constructions for two dimensional balanced sampling plan excluding contiguous units with block size four, Discrete Mathematics, 308 (2008), 3729-3743.  doi: 10.1016/j.disc.2007.07.065.

[15]

F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes. I, North-Holland Mathematical Library, Vol. 16. North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977.

[16]

Y. Miao and L. Zhu, Existence of incomplete group divisible designs, J. Comb. Math. Comb. Comput., 6 (1989), 33-49. 

[17]

K. N. Patel and I. L. Markov, Error-correction and crosstalk avoidance in DSM busses, Proceedings of the 2003 International Workshop on System-level Interconnect Prediction, ACM, (2003), 9–14. doi: 10.1145/639929.639933.

[18]

S. RamprasadN. R. Shanbhag and I. N. Hajj, A coding framework for low-power address and data busses, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 7 (1999), 212-221.  doi: 10.1109/92.766748.

[19]

D. Rossi, V. E. S. van Dijk, R. P. Kleihorst, A. H. Nieuwland and C. Metra, Coding scheme for low energy consumption fault-tolerant bus, Proceedings of the Eighth IEEE International On-Line Testing Workshop (IOLTW), IEEE, (2002), 8–12. doi: 10.1109/OLT.2002.1030176.

[20]

J. E. Simpson, Langford sequences: Perfect and hooked, Discrete Mathematics, 44 (1983), 97-104.  doi: 10.1016/0012-365X(83)90008-0.

[21]

M. R. Stan and W. P. Burleson, Bus-invert coding for low-power I/O, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 3 (1995), 49-58.  doi: 10.1109/92.365453.

[22]

J. Stufken, Combinatorial and statistical aspects of sampling plans to avoid the selection of adjacent units, J. Combin. Info. Syst. Sci., 18 (1993), 149-160. 

[23]

J. Stufken and J. H. Wright, Polygonal designs with blocks of size $k \leq 10$, Metrika, 54 (2001), 179-184.  doi: 10.1007/s001840100137.

[24]

C.-L. SuC.-Y. Tsui and A. M. Despain, Saving power in the control path of embedded processors, IEEE Design Test of Computers, 11 (1994), 24-31.  doi: 10.1109/54.329448.

[25]

M. H. TahirI. IqbalM. Akhtar and J. Shabbir, Cyclic polygonal designs with block size 3 and $\lambda = 1$ for joint distance $\alpha = 6$ to $16$, Journal of Statistical Theory and Practice, 4 (2010), 203-220.  doi: 10.1080/15598608.2010.10411981.

[26]

B. Victor and K. Keutzer, Bus encoding to prevent crosstalk delay, Proceedings of the 2001 IEEE/ACM International Conference on Computer-Aided Design, (2001), 57–63. doi: 10.1109/ICCAD.2001.968598.

[27]

X. M. WangT. FengJ. Zhang and Y. Xu, Two-dimensional balanced sampling plans avoiding adjacent units, Discrete Mathematics, 338 (2015), 1624-1642.  doi: 10.1016/j.disc.2015.04.012.

[28]

J. H. Wright, Two-dimensional balanced sampling plans excluding adjacent units, Journal of Statistical Planning and Inference, 138 (2008), 145-153.  doi: 10.1016/j.jspi.2007.05.016.

[29]

J. H. Wright and J. Stufken, New balanced sampling plans excluding adjacent units, Journal of Statistical Planning and Inference, 138 (2008), 3326-3335.  doi: 10.1016/j.jspi.2006.10.020.

[30]

J. Zhang and Y. X. Chang, The spectrum of cyclic BSEC with block size three, Discrete Mathematics, 305 (2005), 312-322.  doi: 10.1016/j.disc.2005.06.030.

[31]

J. Zhang and Y. X. Chang, The spectrum of cyclic BSA $(v, 3, \lambda; \alpha)$ with $\alpha=2, 3$, Journal of Combinatorial Designs, 13 (2005), 313-335.  doi: 10.1002/jcd.20049.

[32]

J. Zhang and Y. X. Chang, The spectrum of {BSA ($v$, 3, $\lambda$; $\alpha$)} with $\alpha$= 2, 3, Journal of Combinatorial Designs, 15 (2007), 61-76.  doi: 10.1002/jcd.20104.

[33]

J. Zhang and Y. X. Chang, Existence of BSAs and cyclic BSAs of block size three, Journal of Statistical Planning and Inference, 137 (2007), 1496-1511.  doi: 10.1016/j.jspi.2006.02.009.

[34]

J. Zhang and Y. X. Chang, Partitionable sets and cyclic BSECs with block size four, Journal of Statistical Planning and Inference, 139 (2009), 1974-1979.  doi: 10.1016/j.jspi.2008.09.007.

Figure 1.  Leave graphs of LPSA$ (6n,3;2) $ having $ 3n $ edges
Figure 2.  Points of the hole are denoted by $ \bullet $ and others by $ \circ $
Figure 3.  Points of the hole are denoted by $ \bullet $ and others by $ \circ $
Table 1.  Types of worst crosstalk couplings
Type-Ⅰ Type-Ⅱ Type-Ⅲ Type-Ⅳ
$ 0\longleftrightarrow1 $ $ 001\longleftrightarrow010 $ $ 010\longleftrightarrow101 $
$ 001\longleftrightarrow110 $ $ 010\longleftrightarrow100 $
$ 011\longleftrightarrow100 $ $ 011\longleftrightarrow101 $
$ 101\longleftrightarrow110 $
Single wire undergoes transition. Adjacent wires maintain previous states Center wire in opposite transition to an adjacent wire. The other wire in same transition as center wire Center wire in opposite transition to an adjacent wire. The other wire maintains previous state All three adjacent wires undergo opposite transitions
Type-Ⅰ Type-Ⅱ Type-Ⅲ Type-Ⅳ
$ 0\longleftrightarrow1 $ $ 001\longleftrightarrow010 $ $ 010\longleftrightarrow101 $
$ 001\longleftrightarrow110 $ $ 010\longleftrightarrow100 $
$ 011\longleftrightarrow100 $ $ 011\longleftrightarrow101 $
$ 101\longleftrightarrow110 $
Single wire undergoes transition. Adjacent wires maintain previous states Center wire in opposite transition to an adjacent wire. The other wire in same transition as center wire Center wire in opposite transition to an adjacent wire. The other wire maintains previous state All three adjacent wires undergo opposite transitions
Table 2.  Upper bounds and leave graphs of CPSAs and LPSAs excluding edges within distance two
Sampling plans Upper bounds Leave graphs
CPSA$ (6n,3;2) $ $ 6n(n-1) $ A perfect matching
CPSA$ (6n+1,3;2) $ $ n(6n-3)-2 $ A cycle of length four
LPSA$ (6n,3;2) $ $ 6n(n-1)+1 $ see Fig. 1
LPSA$ (6n+1,3;2) $ $ n(6n-3) $ A single edge
Sampling plans Upper bounds Leave graphs
CPSA$ (6n,3;2) $ $ 6n(n-1) $ A perfect matching
CPSA$ (6n+1,3;2) $ $ n(6n-3)-2 $ A cycle of length four
LPSA$ (6n,3;2) $ $ 6n(n-1)+1 $ see Fig. 1
LPSA$ (6n+1,3;2) $ $ n(6n-3) $ A single edge
Table 3.  Existence results of small orders
$ n $ $ 24 $ $ 25 $ $ 30 $ $ 31 $ $ 36 $ $ 37 $ $ 48 $ $ 49 $
$ B^{\circ}(n,3;2) $ $ - $ $ 82 $ $ - $ $ 133 $ $ - $ $ 196 $ $ 336 $ $ 358 $
$ B(n,3;2) $ $ 73 $ $ 84 $ $ 121 $ $ 135 $ $ 181 $ $ 198 $ $ 337 $ $ 360 $
$ n $ $ 24 $ $ 25 $ $ 30 $ $ 31 $ $ 36 $ $ 37 $ $ 48 $ $ 49 $
$ B^{\circ}(n,3;2) $ $ - $ $ 82 $ $ - $ $ 133 $ $ - $ $ 196 $ $ 336 $ $ 358 $
$ B(n,3;2) $ $ 73 $ $ 84 $ $ 121 $ $ 135 $ $ 181 $ $ 198 $ $ 337 $ $ 360 $
Table 4.  Parameters for proof of Lemma 4.6
n=3g+t-1 g t s
72s=3(24(s-1)+18)+18 24(s-1)+18 19 $s\geq 1, \ s\neq 1$
72s+24=3(24(s-1)+18)+42 24(s-1)+18 43 $s\geq 1, \ s\neq 1,2,3$
72s+48=3(24s+12)+12 24s+12 13 $s\geq 1$
n=3g+t-1 g t s
72s=3(24(s-1)+18)+18 24(s-1)+18 19 $s\geq 1, \ s\neq 1$
72s+24=3(24(s-1)+18)+42 24(s-1)+18 43 $s\geq 1, \ s\neq 1,2,3$
72s+48=3(24s+12)+12 24s+12 13 $s\geq 1$
Table 5.  Parameters for proof of Lemma 4.8
$n\quad \ \ \ \ \ \ =3g+t$ $g$ $t$ $s$
$72s+1 \ =3(24(s-1)+18)+19$ $24(s-1)+18$ $19$ $s\geq 1,\ s\neq 1$
$72s+7 \ =3(24s)+7$ $24s$ $7$ $s\geq 1$
$72s+13=3(24(s-1)+18)+31$ $24(s-1)+18$ $31$ $s\geq 1,\ s\neq 1,2,3$
$72s+19=3(24s+6)+1$ $24s+6$ $1$ $s\geq 1$
$72s+25=3(24(s-1)+18)+43$ $24(s-1)+18$ $43$ $s\geq 1, \ s\neq 1,2,3$
$72s+31=3(24s+6)+13$ $24s+6$ $13$ $s\geq 1, \ s\neq 1$
$72s+37=3(24(s-1)+12)+1$ $24(s-1)+12$ $1$ $s\geq 1, \ s\neq 1$
$72s+43=3(24s+6)+25$ $24s+6$ $25$ $s\geq 1, \ s\neq 1$
$72s+49=3(24s+12)+13$ $24s+12$ $13$ $s\geq 1$
$72s+55=3(24s+18)+1$ $24s+18$ $1$ $s\geq 1$
$72s+61=3(24s+18)+7$ $24s+18$ $7$ $s\geq 1$
$72s+67=3(24s+6)+49$ $24s+6$ $49$ $s\geq 1, \ s\neq 1,2,3$
$n\quad \ \ \ \ \ \ =3g+t$ $g$ $t$ $s$
$72s+1 \ =3(24(s-1)+18)+19$ $24(s-1)+18$ $19$ $s\geq 1,\ s\neq 1$
$72s+7 \ =3(24s)+7$ $24s$ $7$ $s\geq 1$
$72s+13=3(24(s-1)+18)+31$ $24(s-1)+18$ $31$ $s\geq 1,\ s\neq 1,2,3$
$72s+19=3(24s+6)+1$ $24s+6$ $1$ $s\geq 1$
$72s+25=3(24(s-1)+18)+43$ $24(s-1)+18$ $43$ $s\geq 1, \ s\neq 1,2,3$
$72s+31=3(24s+6)+13$ $24s+6$ $13$ $s\geq 1, \ s\neq 1$
$72s+37=3(24(s-1)+12)+1$ $24(s-1)+12$ $1$ $s\geq 1, \ s\neq 1$
$72s+43=3(24s+6)+25$ $24s+6$ $25$ $s\geq 1, \ s\neq 1$
$72s+49=3(24s+12)+13$ $24s+12$ $13$ $s\geq 1$
$72s+55=3(24s+18)+1$ $24s+18$ $1$ $s\geq 1$
$72s+61=3(24s+18)+7$ $24s+18$ $7$ $s\geq 1$
$72s+67=3(24s+6)+49$ $24s+6$ $49$ $s\geq 1, \ s\neq 1,2,3$
[1]

Alberto Saracco, Giorgio Saracco. A discrete districting plan. Networks and Heterogeneous Media, 2019, 14 (4) : 771-788. doi: 10.3934/nhm.2019031

[2]

Ellina Grigorieva, Evgenii Khailov. Optimal control of a commercial loan repayment plan. Conference Publications, 2005, 2005 (Special) : 345-354. doi: 10.3934/proc.2005.2005.345

[3]

Chuanxin Zhao, Lin Jiang, Kok Lay Teo. A hybrid chaos firefly algorithm for three-dimensional irregular packing problem. Journal of Industrial and Management Optimization, 2020, 16 (1) : 409-429. doi: 10.3934/jimo.2018160

[4]

Wenxun Xing, Feng Chen. A-shaped bin packing: Worst case analysis via simulation. Journal of Industrial and Management Optimization, 2005, 1 (3) : 323-335. doi: 10.3934/jimo.2005.1.323

[5]

Shinji Imahori, Yoshiyuki Karuno, Kenju Tateishi. Pseudo-polynomial time algorithms for combinatorial food mixture packing problems. Journal of Industrial and Management Optimization, 2016, 12 (3) : 1057-1073. doi: 10.3934/jimo.2016.12.1057

[6]

Keaton Hamm, Longxiu Huang. Stability of sampling for CUR decompositions. Foundations of Data Science, 2020, 2 (2) : 83-99. doi: 10.3934/fods.2020006

[7]

Andries E. Brouwer, Tuvi Etzion. Some new distance-4 constant weight codes. Advances in Mathematics of Communications, 2011, 5 (3) : 417-424. doi: 10.3934/amc.2011.5.417

[8]

Upendra Kapshikar, Ayan Mahalanobis. Niederreiter cryptosystems using quasi-cyclic codes that resist quantum Fourier sampling. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021062

[9]

Alexandre J. Chorin, Fei Lu, Robert N. Miller, Matthias Morzfeld, Xuemin Tu. Sampling, feasibility, and priors in data assimilation. Discrete and Continuous Dynamical Systems, 2016, 36 (8) : 4227-4246. doi: 10.3934/dcds.2016.36.4227

[10]

Shixu Meng. A sampling type method in an electromagnetic waveguide. Inverse Problems and Imaging, 2021, 15 (4) : 745-762. doi: 10.3934/ipi.2021012

[11]

G.S. Liu, J.Z. Zhang. Decision making of transportation plan, a bilevel transportation problem approach. Journal of Industrial and Management Optimization, 2005, 1 (3) : 305-314. doi: 10.3934/jimo.2005.1.305

[12]

Pei Wang, Ling Zhang, Zhongfei Li. Asset allocation for a DC pension plan with learning about stock return predictability. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021138

[13]

Mao Chen, Xiangyang Tang, Zhizhong Zeng, Sanya Liu. An efficient heuristic algorithm for two-dimensional rectangular packing problem with central rectangle. Journal of Industrial and Management Optimization, 2020, 16 (1) : 495-510. doi: 10.3934/jimo.2018164

[14]

Peter Monk, Virginia Selgas. Sampling type methods for an inverse waveguide problem. Inverse Problems and Imaging, 2012, 6 (4) : 709-747. doi: 10.3934/ipi.2012.6.709

[15]

Fang Zeng. Extended sampling method for interior inverse scattering problems. Inverse Problems and Imaging, 2020, 14 (4) : 719-731. doi: 10.3934/ipi.2020033

[16]

T. Hillen, K. Painter, Christian Schmeiser. Global existence for chemotaxis with finite sampling radius. Discrete and Continuous Dynamical Systems - B, 2007, 7 (1) : 125-144. doi: 10.3934/dcdsb.2007.7.125

[17]

Martin Hanke. Why linear sampling really seems to work. Inverse Problems and Imaging, 2008, 2 (3) : 373-395. doi: 10.3934/ipi.2008.2.373

[18]

Aku Kammonen, Jonas Kiessling, Petr Plecháč, Mattias Sandberg, Anders Szepessy. Adaptive random Fourier features with Metropolis sampling. Foundations of Data Science, 2020, 2 (3) : 309-332. doi: 10.3934/fods.2020014

[19]

Harun Karsli. On multidimensional Urysohn type generalized sampling operators. Mathematical Foundations of Computing, 2021, 4 (4) : 271-280. doi: 10.3934/mfc.2021015

[20]

Jiying Liu, Jubo Zhu, Fengxia Yan, Zenghui Zhang. Compressive sampling and $l_1$ minimization for SAR imaging with low sampling rate. Inverse Problems and Imaging, 2013, 7 (4) : 1295-1305. doi: 10.3934/ipi.2013.7.1295

2020 Impact Factor: 0.935

Metrics

  • PDF downloads (306)
  • HTML views (735)
  • Cited by (0)

Other articles
by authors

[Back to Top]