\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Binary codes from $ m $-ary $ n $-cubes $ Q^m_n $

  • * Corresponding author: J. D. Key

    * Corresponding author: J. D. Key 

The second author is supported by the National Research Foundation of South Africa (Grant Numbers 95725 and 106071)

Abstract Full Text(HTML) Figure(0) / Table(1) Related Papers Cited by
  • We examine the binary codes from adjacency matrices of the graph with vertices the nodes of the $ m $-ary $ n $-cube $ Q^m_n $ and with adjacency defined by the Lee metric. For $ n = 2 $ and $ m $ odd, we obtain the parameters of the code and its dual, and show the codes to be $ LCD $. We also find $ s $-PD-sets of size $ s+1 $ for $ s < \frac{m-1}{2} $ for the dual codes, i.e. $ [m^2,2m-1,m]_2 $ codes, when $ n = 2 $ and $ m\ge 5 $ is odd.

    Mathematics Subject Classification: Primary: 05C50, 94B05; Secondary: 05B05.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Table 1.  Blocks in $ \mathcal{{B}} $$ _m $

    $ m $
    $ 5 $ $ 0,2 $
    $ 7 $ $ 0,0 $ $ 0,3 $ $ 2,2 $
    $ 9 $ $ 0,2 $ $ 0,3 $ $ 2,4 $
    $ 11 $ $ 0,0 $ $ 0,3 $ $ 0,4 $ $ 2,2 $ $ 2,5 $ $ 4,4 $
    $ 13 $ $ 0,2 $ $ 0,3 $ $ 0,6 $ $ 2,4 $ $ 2,5 $ $ 4,6 $
    $ 15 $ $ 0,0 $ $ 0,3 $ $ 0,4 $ $ 0,7 $ $ 2,2 $ $ 2,5 $ $ 2,6 $ $ 4,4 $ $ 4,7 $ $ 6,6 $
    $ 17 $ $ 0,2 $ $ 0,3 $ $ 0,6 $ $ 0,7 $ $ 2,4 $ $ 2,5 $ $ 2,8 $ $ 4,6 $ $ 4,7 $ $ 6,8 $
    $ 19 $ $ 0,0 $ $ 0,3 $ $ 0,4 $ $ 0,7 $ 0, 8 $ 2,2 $ $ 2,5 $ $ 2,6 $ 2, 9 $ 4,4 $ $ 4,7 $ 4, 8 $ 6,6 $ 6, 9 8, 8
     | Show Table
    DownLoad: CSV
  • [1] E. F. Assmus, Jr. and J. D. Key, Designs and Their Codes, Cambridge Tracts in Mathematics,103. Cambridge University Press, Cambridge, 1992. doi: 10.1017/CBO9781316529836.
    [2] B. BoseB. BroegY. Kwon and Y. Ashir, Lee distance and topological properties of $k$-ary $n$-cubes, IEEE Trans. Computers, 44 (1995), 1021-1030.  doi: 10.1109/12.403718.
    [3] W. BosmaJ. Cannon and C. Playoust, The Magma algebra system. I: The user language, J. Symbolic Comput., 24 (1997), 235-265.  doi: 10.1006/jsco.1996.0125.
    [4] J. Cannon, A. Steel and G. White, Linear codes over finite fields, Handbook of Magma Functions, Computational Algebra Group, Department of Mathematics, University of Sydney, (2006), 3951–4023. http://magma.maths.usyd.edu.au/magma.
    [5] K. Day and A. E. Al Ayyoub, Fault diameter of $k$-ary $n$-cube networks, IEEE Trans. Parallel and Distributed Systems, 8 (1997), 903-907.  doi: 10.1109/71.615436.
    [6] W. Fish, Binary codes and permutation decoding sets from the graph products of cycles, Appl. Algebra Engrg. Comm. Comput., 28 (2017), 369-389.  doi: 10.1007/s00200-016-0310-y.
    [7] W. Fish, J. D. Key and E. Mwambene, LCDcodes from products of graphs, In preparation.
    [8] W. FishJ. D. Key and E. Mwambene, Codes, designs and groups from the Hamming graphs, J. Combin. Inform. System Sci., 34 (2009), 169-182.  doi: 10.1016/j.disc.2008.09.024.
    [9] W. Fish, Codes from Uniform Subset Graphs and Cycle Products, PhD thesis, University of the Western Cape, 2007.
    [10] D. M. Gordon, Minimal permutation sets for decoding the binary Golay codes, IEEE Trans. Inform. Theory, 28 (1982), 541-543.  doi: 10.1109/TIT.1982.1056504.
    [11] W. C. Huffman, Codes and groups, Handbook of Coding Theory, North-Holland, Amsterdam, 1, 2 (1998), 1345-1440. 
    [12] J. D. KeyT. P. McDonough and V. C. Mavron, Partial permutation decoding for codes from finite planes, European J. Combin., 26 (2005), 665-682.  doi: 10.1016/j.ejc.2004.04.007.
    [13] J. D. KeyT. P. McDonough and V. C. Mavron, Information sets and partial permutation decoding for codes from finite geometries, Finite Fields Appl., 12 (2006), 232-247.  doi: 10.1016/j.ffa.2005.05.007.
    [14] J. D. KeyT. P. Mc{D}onough and V. C. Mavron, Improved partial permutation decoding for Reed-Muller codes, Discrete Math., 340 (2017), 722-728.  doi: 10.1016/j.disc.2016.11.031.
    [15] J. D. Key and B. G. Rodrigues, LCD codes from adjacency matrices of graphs, Appl. Algebra Engrg. Comm. Comput., 29 (2018), 227-244.  doi: 10.1007/s00200-017-0339-6.
    [16] J. D. Key and B. G. Rodrigues, Special $LCD$ codes from {P}eisert and generalized Peisert graphs, Graphs Combin., 35 (2019), 633-652.  doi: 10.1007/s00373-019-02019-0.
    [17] C. Kravvaritis, Determinant evaluations for binary circulant matrices, Spec. Matrices, 1 (2013), 187–199. http://dx.doi.org/10.2478/spma-2014-0019.
    [18] H.-J. Kroll and R. Vincenti, PD-sets related to the codes of some classical varieties, Discrete Math., 301 (2005), 89-105.  doi: 10.1016/j.disc.2004.11.020.
    [19] F. J. MacWilliams, Permutation decoding of systematic codes, Bell System Tech. J., 43 (1964), 485-505. 
    [20] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes. II, North-Holland Mathematical Library, Vol. 16. North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977.
    [21] J. L. Massey, Linear codes with complementary duals, Discrete Math., 106/107 (1992), 337-342.  doi: 10.1016/0012-365X(92)90563-U.
    [22] J. Schönheim, On coverings, Pacific J. Math., 14 (1964), 1405-1411.  doi: 10.2140/pjm.1964.14.1405.
  • 加载中

Tables(1)

SHARE

Article Metrics

HTML views(839) PDF downloads(363) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return