[1]
|
E. F. Assmus, Jr. and J. D. Key, Designs and Their Codes, Cambridge Tracts in Mathematics,103. Cambridge University Press, Cambridge, 1992.
doi: 10.1017/CBO9781316529836.
|
[2]
|
B. Bose, B. Broeg, Y. Kwon and Y. Ashir, Lee distance and topological properties of $k$-ary $n$-cubes, IEEE Trans. Computers, 44 (1995), 1021-1030.
doi: 10.1109/12.403718.
|
[3]
|
W. Bosma, J. Cannon and C. Playoust, The Magma algebra system. I: The user language, J. Symbolic Comput., 24 (1997), 235-265.
doi: 10.1006/jsco.1996.0125.
|
[4]
|
J. Cannon, A. Steel and G. White, Linear codes over finite fields, Handbook of Magma Functions, Computational Algebra Group, Department of Mathematics, University of Sydney, (2006), 3951–4023. http://magma.maths.usyd.edu.au/magma.
|
[5]
|
K. Day and A. E. Al Ayyoub, Fault diameter of $k$-ary $n$-cube networks, IEEE Trans. Parallel and Distributed Systems, 8 (1997), 903-907.
doi: 10.1109/71.615436.
|
[6]
|
W. Fish, Binary codes and permutation decoding sets from the graph products of cycles, Appl. Algebra Engrg. Comm. Comput., 28 (2017), 369-389.
doi: 10.1007/s00200-016-0310-y.
|
[7]
|
W. Fish, J. D. Key and E. Mwambene, LCDcodes from products of graphs, In preparation.
|
[8]
|
W. Fish, J. D. Key and E. Mwambene, Codes, designs and groups from the Hamming graphs, J. Combin. Inform. System Sci., 34 (2009), 169-182.
doi: 10.1016/j.disc.2008.09.024.
|
[9]
|
W. Fish, Codes from Uniform Subset Graphs and Cycle Products, PhD thesis, University of the Western Cape, 2007.
|
[10]
|
D. M. Gordon, Minimal permutation sets for decoding the binary Golay codes, IEEE Trans. Inform. Theory, 28 (1982), 541-543.
doi: 10.1109/TIT.1982.1056504.
|
[11]
|
W. C. Huffman, Codes and groups, Handbook of Coding Theory, North-Holland, Amsterdam, 1, 2 (1998), 1345-1440.
|
[12]
|
J. D. Key, T. P. McDonough and V. C. Mavron, Partial permutation decoding for codes from finite planes, European J. Combin., 26 (2005), 665-682.
doi: 10.1016/j.ejc.2004.04.007.
|
[13]
|
J. D. Key, T. P. McDonough and V. C. Mavron, Information sets and partial permutation decoding for codes from finite geometries, Finite Fields Appl., 12 (2006), 232-247.
doi: 10.1016/j.ffa.2005.05.007.
|
[14]
|
J. D. Key, T. P. Mc{D}onough and V. C. Mavron, Improved partial permutation decoding for Reed-Muller codes, Discrete Math., 340 (2017), 722-728.
doi: 10.1016/j.disc.2016.11.031.
|
[15]
|
J. D. Key and B. G. Rodrigues, LCD codes from adjacency matrices of graphs, Appl. Algebra Engrg. Comm. Comput., 29 (2018), 227-244.
doi: 10.1007/s00200-017-0339-6.
|
[16]
|
J. D. Key and B. G. Rodrigues, Special $LCD$ codes from {P}eisert and generalized Peisert graphs, Graphs Combin., 35 (2019), 633-652.
doi: 10.1007/s00373-019-02019-0.
|
[17]
|
C. Kravvaritis, Determinant evaluations for binary circulant matrices, Spec. Matrices, 1 (2013), 187–199. http://dx.doi.org/10.2478/spma-2014-0019.
|
[18]
|
H.-J. Kroll and R. Vincenti, PD-sets related to the codes of some classical varieties, Discrete Math., 301 (2005), 89-105.
doi: 10.1016/j.disc.2004.11.020.
|
[19]
|
F. J. MacWilliams, Permutation decoding of systematic codes, Bell System Tech. J., 43 (1964), 485-505.
|
[20]
|
F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes. II, North-Holland Mathematical Library, Vol. 16. North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977.
|
[21]
|
J. L. Massey, Linear codes with complementary duals, Discrete Math., 106/107 (1992), 337-342.
doi: 10.1016/0012-365X(92)90563-U.
|
[22]
|
J. Schönheim, On coverings, Pacific J. Math., 14 (1964), 1405-1411.
doi: 10.2140/pjm.1964.14.1405.
|