[1]
|
T. P. Berger, A. Canteaut, P. Charpin and Y. Laigle-Chapuy, On almost perfect nonlinear functions over $F_{2^n}$, IEEE Trans. Inform. Theory, 52 (2006), 4160-4170.
doi: 10.1109/TIT.2006.880036.
|
[2]
|
E. Biham and A. Shamir, Differential cryptanalysis of DES-like cryptosystems, J. Cryptology, 4 (1991), 3-72.
doi: 10.1007/BF00630563.
|
[3]
|
C. Blondeau, A. Canteaut and P. Charpin, Differential properties of power functions, Int. J. Inf. Coding Theory, 1 (2010), 149-170.
doi: 10.1504/IJICOT.2010.032132.
|
[4]
|
C. Blondeau, A. Canteaut and P. Charpin, Differential properties of $x \mapsto x^{2^t-1}$, IEEE Trans. Inform. Theory, 57 (2011), 8127-8137.
doi: 10.1109/TIT.2011.2169129.
|
[5]
|
C. Blondeau and L. Perrin, More differentially $6$-uniform power functions, Des. Codes Cryptogr., 73 (2014), 487-505.
doi: 10.1007/s10623-014-9948-2.
|
[6]
|
A. Canteaut and M. Videau, Degree of composition of highly nonlinear functions and applications to higher order differential cryptanalysis, Advances in Cryptology - EUROCRYPT, Lecture Notes in Comput. Sci., Springer, Berlin, 2332 (2002), 518-533.
doi: 10.1007/3-540-46035-7_34.
|
[7]
|
C. Carlet, P. Charpin and V. Zinoviev, Codes, bent functions and permutations suitable for DES-like cryptosystems, Des. Codes Cryptogr., 15 (1998), 125-156.
doi: 10.1023/A:1008344232130.
|
[8]
|
C. Carlet and C. S. Ding, Highly nonlinear mappings, J. Complexity, 20 (2004), 205-244.
doi: 10.1016/j.jco.2003.08.008.
|
[9]
|
C. Carlet, C. S. Ding and J. Yuan, Linear codes from perfect nonlinear mappings and their secret sharing schemes, IEEE Trans. Inform. Theory, 51 (2005), 2089-2102.
doi: 10.1109/TIT.2005.847722.
|
[10]
|
S.-T. Choi, S. Hong, J.-S. No and H. Chung, Differential spectrum of some power functions in odd prime characteristic, Finite Fields Appl., 21 (2013), 11-29.
doi: 10.1016/j.ffa.2013.01.002.
|
[11]
|
R. S. Coulter and R. W. Matthews, Planar functions and planes of Lenz-Barlotti class II, Des. Codes Cryptogr., 10 (1997), 167-184.
doi: 10.1023/A:1008292303803.
|
[12]
|
N. T. Courtois and J. Pieprzyk, Cryptanalysis of block ciphers with overdefined systems of equations, Advances in Cryptology - ASIACRYPT, Lecture Notes in Comput. Sci., Springer, Berlin, 2501 (2002), 267-287.
doi: 10.1007/3-540-36178-2_17.
|
[13]
|
C. S. Ding, M. J. Moisio and J. Yuan, Algebraic constructions of optimal frequency-hopping sequences, IEEE Trans. Inform. Theory, 53 (2007), 2606-2610.
doi: 10.1109/TIT.2007.899545.
|
[14]
|
C. S. Ding and J. Yuan, A family of skew Hadamard difference sets, J. Comb. Theory, Ser. A, 113 (2006), 1526-1535.
doi: 10.1016/j.jcta.2005.10.006.
|
[15]
|
H. Dobbertin, D. Mills, E. N. Muller and A. P. Willems, APN functions in odd characteristic, Discrete Math., 267 (2003), 95-112.
doi: 10.1016/S0012-365X(02)00606-4.
|
[16]
|
H. Dobbertin, Almost perfect nonlinear power functions on $GF(2^n)$: The Welch case, IEEE Trans. Inform. Theory, 45 (1999), 1271-1275.
doi: 10.1109/18.761283.
|
[17]
|
Y. Edel, G. Kyureghyan and A. Pott, A new APN functions which is not equivalent to a power mapping, IEEE Trans. Inform. Theory, 52 (2006), 744-747.
doi: 10.1109/TIT.2005.862128.
|
[18]
|
T. Helleseth, C. M. Rong and D. Sandberg, New families of almost perfect nonlinear power mapping, IEEE Trans. Inform. Theory, 45 (1999), 475-485.
doi: 10.1109/18.748997.
|
[19]
|
T. Helleseth and D. Sandberg, Some power mappings with low differential uniformity, Appl. Algebra Engrg. Comm. Comput., 8 (1997), 363-370.
doi: 10.1007/s002000050073.
|
[20]
|
T. Helleseth, Some results about the cross-correlation function between two maximal linear sequences, Discrete Math., 16 (1976), 209-232.
doi: 10.1016/0012-365X(76)90100-X.
|
[21]
|
T. Jakobsen and L. R. Knudsen, The interpolation attack on block ciphers, Fast Software Encryption - FSE, Lecture Notes in Comput. Sci., Springer, Berlin, 1267 (1997), 28-40.
doi: 10.1007/BFb0052332.
|
[22]
|
P. V. Kumar and O. Moreno, Prime-phase sequences with periodic correlation properties better than binary sequences, IEEE Trans. Inform. Theory, 37 (1991), 603-616.
doi: 10.1109/18.79916.
|
[23]
|
R. Lidl and H. Niederreiter, Finite Fields, Second edition, Encyclopedia of Mathematics and its Applications, 20. Cambridge University Press, Cambridge, 1997.
|
[24]
|
S. X. Ma, H. L. Zhang, W. D. Jin and X. H. Niu, A new family of optimal ternary cyclic codes, IEICE Trans. Fund., E97 (2014), 690-693.
doi: 10.1587/transfun.E97.A.690.
|
[25]
|
G. J. Ness and T. Helleseth, A new family of ternary almost perfect nonlinear mappings, IEEE Trans. Inform. Theory, 53 (2007), 2581-2586.
doi: 10.1109/TIT.2007.899508.
|
[26]
|
A. Pott, Almost perfect and planar functions, Des. Codes Cryptogr., 78 (2016), 141-195.
doi: 10.1007/s10623-015-0151-x.
|
[27]
|
H. Trachtenberg, On the Cross-Correlation Functions of Maximal Linear Sequences, Ph. D. thesis, University of Southern California, 1970.
|
[28]
|
M. S. Xiong and H. D. Yan, A note on the differential spectrum of a differentially 4-uniform power function, Finite Fields Appl., 48 (2017), 117-125.
doi: 10.1016/j.ffa.2017.07.008.
|
[29]
|
M. S. Xiong, H. D. Yan and P. Z. Yuan, On a conjecture of differentially 8-uniform power functions, Des. Codes Cryptogr., 86 (2018), 1601-1621.
doi: 10.1007/s10623-017-0416-7.
|
[30]
|
G. K. Xu, X. W. Cao and S. D. Xu, Several classes of polynomials with low differential uniformity over finite fields of odd characteristic, Appl. Algebra Engrg. Comm. Comput., 27 (2016), 91-103.
doi: 10.1007/s00200-015-0272-5.
|
[31]
|
H. D. Yan and D. C. Han, A class of 3-uniform ternary power function and related codes, IEICE Trans. Fund., E102-A (2019), 849-853.
|
[32]
|
H. D. Yan, Z. C. Zhou, J. Weng, J. M. Wen, T. Helleseth and Q. Wang, Differencial spectrum of Kasami power permutation over odd characteristic finite fields, IEEE Trans. Inform. Theory, 65 (2019), 6819-6826.
doi: 10.1109/TIT.2019.2910070.
|
[33]
|
X. Y. Zeng, L. Hu, W. F. Jiang, Q. Yue and X. W. Cao, The weight distribution of a class of $p$-ary cyclic codes, Finite Fields Appl., 16 (2010), 56-73.
doi: 10.1016/j.ffa.2009.12.001.
|
[34]
|
Z. B. Zha and X. L. Wang, Almost perfect nonlinear power functions in odd characteristic, IEEE Trans. Inform. Theory, 57 (2011), 4826-4832.
doi: 10.1109/TIT.2011.2145130.
|
[35]
|
Z. B. Zha and X. L. Wang, Power functions with low uniformity on odd characteristic finite fields, Sci. China Math., 53 (2010), 1931-1940.
doi: 10.1007/s11425-010-3149-x.
|
[36]
|
Z. C. Zhou and C. S. Ding, A class of three-weight codes, Finite Fields Appl., 25 (2014), 79-93.
doi: 10.1016/j.ffa.2013.08.005.
|