0 |
$ x_{256}^0 $ |
$ x_{0}, \underline{x_{41}}, \overline{x_{70}} $ |
$ x_{252}^1 $ |
$ x_{252}, x_{42}, $ $ x_{83}, x_{8} $ |
$ x_{248}^2 $ |
$ x_{248}, x_{44}, $ $ x_{102}, x_{40} $ |
$ x_{244}^3 $ |
$ x_{244}, x_{43}, $ $ x_{118}, x_{103} $ |
$ x_{240}^4 $ |
$ x_{240}, \overline{x_{46}}, $ $ \underline{x_{141}}, x_{117} $ |
1 |
$ x_{257}^0 $ |
$ x_{1}, \underline{x_{42}}, \overline{x_{71}} $ |
$ x_{253}^1 $ |
$ x_{253}, x_{43}, $ $ x_{84}, x_{9} $ |
$ x_{249}^2 $ |
$ x_{249}, x_{45}, $ $ x_{103}, x_{41} $ |
$ x_{245}^3 $ |
$ x_{245}, x_{44}, $ $ x_{119}, x_{104} $ |
$ x_{241}^4 $ |
$ x_{241}, \overline{x_{47}}, $ $ \underline{x_{142}}, x_{118} $ |
2 |
$ x_{258}^0 $ |
$ x_{2}, \underline{x_{43}}, \overline{x_{72}} $ |
$ x_{254}^1 $ |
$ x_{254}, x_{44}, $ $ x_{85}, x_{10} $ |
$ x_{250}^2 $ |
$ x_{250}, \overline{x_{46}}, $ $ \underline{x_{104}}, x_{42} $ |
$ x_{246}^3 $ |
$ x_{246}, x_{45}, $ $ x_{120}, x_{105} $ |
$ x_{242}^4 $ |
$ x_{242}, \overline{x_{48}}, $ $ \underline{x_{143}}, x_{119} $ |
3 |
$ x_{259}^0 $ |
$ x_{3}, \underline{x_{44}}, \overline{x_{73}} $ |
$ x_{255}^1 $ |
$ x_{255}, x_{45}, $ $ x_{86}, x_{11} $ |
$ x_{251}^2 $ |
$ x_{251}, \overline{x_{47}}, $ $ \underline{x_{105}}, x_{43} $ |
$ x_{247}^3 $ |
$ x_{247}, \overline{x_{46}}, $ $ \underline{x_{121}}, x_{106} $ |
$ x_{243}^4 $ |
$ x_{243}, \overline{x_{49}}, $ $ \underline{x_{144}}, x_{120} $ |
4 |
$ x_{260}^0 $ |
$ x_{4}, \underline{x_{45}}, \overline{x_{74}} $ |
$ x_{256}^1 $ |
$ x_{256}^0, \overline{x_{46}}, $ $ \underline{x_{87}}, x_{12} $ |
$ x_{252}^2 $ |
$ x_{252}^1, \overline{x_{48}}, $ $ \underline{x_{106}}, x_{44} $ |
$ x_{248}^3 $ |
$ x_{248}^2, \overline{x_{47}}, $ $ \underline{x_{122}}, x_{107} $ |
$ x_{244}^4 $ |
$ x_{244}^3, \overline{x_{50}}, $ $ \underline{x_{145}}, x_{121} $ |
5 |
$ x_{261}^0 $ |
$ x_{5}, \overline{x_{46}}, \overline{x_{75}} $ |
$ x_{257}^1 $ |
$ x_{257}^0, \overline{x_{47}}, $ $ \underline{x_{88}}, x_{13} $ |
$ x_{253}^2 $ |
$ x_{253}^1, \overline{x_{49}}, $ $ \underline{x_{107}}, x_{45} $ |
$ x_{249}^3 $ |
$ x_{249}^2, \overline{x_{48}}, $ $ \underline{x_{123}}, x_{108} $ |
$ x_{245}^4 $ |
$ x_{245}^3, \overline{x_{51}}, $ $ \underline{x_{146}}, x_{122} $ |
6 |
$ x_{262}^0 $ |
$ x_{6}, \overline{x_{47}}, \overline{x_{76}} $ |
$ x_{258}^1 $ |
$ x_{258}^0, \overline{x_{48}}, $ $ \underline{x_{89}}, x_{14} $ |
$ x_{254}^2 $ |
$ x_{254}^1, \overline{x_{50}}, $ $ \underline{x_{108}}, \overline{x_{46}} $ |
$ x_{250}^3 $ |
$ x_{250}^2, \overline{x_{49}}, $ $ \underline{x_{124}}, x_{109} $ |
$ x_{246}^4 $ |
$ x_{246}^3, \overline{x_{52}}, $ $ \underline{x_{147}}, x_{123} $ |
7 |
$ x_{263}^0 $ |
$ x_{7}, \overline{x_{48}}, \underline{x_{77}} $ |
$ x_{259}^1 $ |
$ x_{259}^0, \overline{x_{49}}, $ $ \underline{x_{90}}, x_{15} $ |
$ x_{255}^2 $ |
$ x_{255}^1, \overline{x_{51}}, $ $ \underline{x_{109}}, \overline{x_{47}} $ |
$ x_{251}^3 $ |
$ x_{251}^2, \overline{x_{50}}, $ $ \underline{x_{125}}, x_{110} $ |
$ x_{247}^4 $ |
$ x_{247}^3, \overline{x_{53}}, $ $ \underline{x_{148}}, x_{124} $ |
8 |
$ x_{264}^0 $ |
$ x_{8}, \overline{x_{49}}, \underline{x_{78}} $ |
$ x_{260}^1 $ |
$ x_{260}^0, \overline{x_{50}}, $ $ \underline{x_{91}}, x_{16} $ |
$ x_{256}^2 $ |
$ x_{256}^1, \overline{x_{52}}, $ $ \underline{x_{110}}, \overline{x_{48}} $ |
$ x_{252}^3 $ |
$ x_{252}^2, \overline{x_{51}}, $ $ \underline{x_{126}}, x_{111} $ |
$ x_{248}^4 $ |
$ x_{248}^3, \overline{x_{54}}, $ $ \underline{x_{149}}, x_{125} $ |
9 |
$ x_{265}^0 $ |
$ x_{9}, \overline{x_{50}}, \underline{x_{79}} $ |
$ x_{261}^1 $ |
$ x_{261}^0, \overline{x_{51}}, $ $ \underline{x_{92}}, x_{17} $ |
$ x_{257}^2 $ |
$ x_{257}^1, \overline{x_{53}}, $ $ \underline{x_{111}}, \overline{x_{49}} $ |
$ x_{253}^3 $ |
$ x_{253}^2, \overline{x_{52}}, $ $ \underline{x_{127}}, x_{112} $ |
$ x_{249}^4 $ |
$ x_{249}^3, \overline{x_{55}}, $ $ \underline{x_{150}}, x_{126} $ |
10 |
$ x_{266}^0 $ |
$ x_{10}, \overline{x_{51}}, \underline{x_{80}} $ |
$ x_{262}^1 $ |
$ x_{262}^0, \overline{x_{52}}, $ $ \underline{x_{93}}, x_{18} $ |
$ x_{258}^2 $ |
$ x_{258}^1, \overline{x_{54}}, $ $ \underline{x_{112}}, \overline{x_{50}} $ |
$ x_{254}^3 $ |
$ x_{254}^2, \overline{x_{53}}, $ $ \underline{x_{128}}, x_{113} $ |
$ x_{250}^4 $ |
$ x_{250}^3, \overline{x_{56}}, $ $ \underline{x_{151}}, x_{127} $ |
11 |
$ x_{267}^0 $ |
$ x_{11}, \overline{x_{52}}, \underline{x_{81}} $ |
$ x_{263}^1 $ |
$ x_{263}^0, \overline{x_{53}}, $ $ \underline{x_{94}}, x_{19} $ |
$ x_{259}^2 $ |
$ x_{259}^1, \overline{x_{55}}, $ $ \underline{x_{113}}, \overline{x_{51}} $ |
$ x_{255}^3 $ |
$ x_{255}^2, \overline{x_{54}}, $ $ \underline{x_{129}}, x_{114} $ |
$ x_{251}^4 $ |
$ x_{251}^3, \overline{x_{57}}, $ $ \underline{x_{152}}, x_{128} $ |
12 |
$ x_{268}^0 $ |
$ x_{12}, \overline{x_{53}}, \underline{x_{82}} $ |
$ x_{264}^1 $ |
$ x_{264}^0, \overline{x_{54}}, $ $ \underline{x_{95}}, x_{20} $ |
$ x_{260}^2 $ |
$ x_{260}^1, \overline{x_{56}}, $ $ \underline{x_{114}}, \overline{x_{52}} $ |
$ x_{256}^3 $ |
$ x_{256}^2, \overline{x_{55}}, $ $ \underline{x_{130}}, x_{115} $ |
$ x_{252}^4 $ |
$ x_{252}^3, \overline{x_{58}}, $ $ \underline{x_{153}}, x_{129} $ |
13 |
$ x_{269}^0 $ |
$ x_{13}, \overline{x_{54}}, \underline{x_{83}} $ |
$ x_{265}^1 $ |
$ x_{265}^0, \overline{x_{55}}, $ $ \underline{x_{96}}, x_{21} $ |
$ x_{261}^2 $ |
$ x_{261}^1, \overline{x_{57}}, $ $ \underline{x_{115}}, \overline{x_{53}} $ |
$ x_{257}^3 $ |
$ x_{257}^2, \overline{x_{56}}, $ $ \underline{x_{131}}, x_{116} $ |
$ x_{253}^4 $ |
$ x_{253}^3, \overline{x_{59}}, $ $ \underline{x_{154}}, x_{130} $ |
14 |
$ x_{270}^0 $ |
$ x_{14}, \overline{x_{55}}, \underline{x_{84}} $ |
$ x_{266}^1 $ |
$ x_{266}^0, \overline{x_{56}}, $ $ \underline{x_{97}}, x_{22} $ |
$ x_{262}^2 $ |
$ x_{262}^1, \overline{x_{58}}, $ $ \underline{x_{116}}, \overline{x_{54}} $ |
$ x_{258}^3 $ |
$ x_{258}^2, \overline{x_{57}}, $ $ \underline{x_{132}}, x_{117} $ |
$ x_{254}^4 $ |
$ x_{254}^3, \overline{x_{60}}, $ $ \underline{x_{155}}, x_{131} $ |
15 |
$ x_{271}^0 $ |
$ x_{15}, \overline{x_{56}}, \underline{x_{85}} $ |
$ x_{267}^1 $ |
$ x_{267}^0, \overline{x_{57}}, $ $ \underline{x_{98}}, x_{23} $ |
$ x_{263}^2 $ |
$ x_{263}^1, \overline{x_{59}}, $ $ \underline{x_{117}}, \overline{x_{55}} $ |
$ x_{259}^3 $ |
$ x_{259}^2, \overline{x_{58}}, $ $ \underline{x_{133}}, x_{118} $ |
$ x_{255}^4 $ |
$ x_{255}^3, \overline{x_{61}}, $ $ \underline{x_{156}}, x_{132} $ |
16 |
$ x_{272}^0 $ |
$ x_{16}, \overline{x_{57}}, \underline{x_{86}} $ |
$ x_{268}^1 $ |
$ x_{268}^0, \overline{x_{58}}, $ $ \underline{x_{99}}, x_{24} $ |
$ x_{264}^2 $ |
$ x_{264}^1, \overline{x_{60}}, $ $ \underline{x_{118}}, \overline{x_{56}} $ |
$ x_{260}^3 $ |
$ x_{260}^2, \overline{x_{59}}, $ $ \underline{x_{134}}, x_{119} $ |
$ x_{256}^4 $ |
$ x_{256}^3, \overline{x_{62}}, $ $ \underline{x_{157}}, x_{133} $ |
17 |
$ x_{273}^0 $ |
$ x_{17}, \overline{x_{58}}, \underline{x_{87}} $ |
$ x_{269}^1 $ |
$ x_{269}^0, \overline{x_{59}}, $ $ \underline{x_{100}}, x_{25} $ |
$ x_{265}^2 $ |
$ x_{265}^1, \overline{x_{61}}, $ $ \underline{x_{119}}, \overline{x_{57}} $ |
$ x_{261}^3 $ |
$ x_{261}^2, \overline{x_{60}}, $ $ \underline{x_{135}}, x_{120} $ |
$ x_{257}^4 $ |
$ x_{257}^3, \overline{x_{63}}, $ $ \underline{x_{158}}, x_{134} $ |
18 |
$ x_{274}^0 $ |
$ x_{18}, \overline{x_{59}}, \underline{x_{88}} $ |
$ x_{270}^1 $ |
$ x_{270}^0, \overline{x_{60}}, $ $ \underline{x_{101}}, x_{26} $ |
$ x_{266}^2 $ |
$ x_{266}^1, \overline{x_{62}}, $ $ \underline{x_{120}}, \overline{x_{58}} $ |
$ x_{262}^3 $ |
$ x_{262}^2, \overline{x_{61}}, $ $ \underline{x_{136}}, x_{121} $ |
$ x_{258}^4 $ |
$ x_{258}^3, \overline{x_{64}}, $ $ \underline{x_{159}}, x_{135} $ |
19 |
$ x_{275}^0 $ |
$ x_{19}, \overline{x_{60}}, \underline{x_{89}} $ |
$ x_{271}^1 $ |
$ x_{271}^0, \overline{x_{61}}, $ $ \underline{x_{102}}, x_{27} $ |
$ x_{267}^2 $ |
$ x_{267}^1, \overline{x_{63}}, $ $ \underline{x_{121}}, \overline{x_{59}} $ |
$ x_{263}^3 $ |
$ x_{263}^2, \overline{x_{62}}, $ $ \underline{x_{137}}, x_{122} $ |
$ x_{259}^4 $ |
$ x_{259}^3, \overline{x_{65}}, $ $ \underline{x_{160}}, x_{136} $ |
20 |
$ x_{276}^0 $ |
$ x_{20}, \overline{x_{61}}, \underline{x_{90}} $ |
$ x_{272}^1 $ |
$ x_{272}^0, \overline{x_{62}}, $ $ \underline{x_{103}}, x_{28} $ |
$ x_{268}^2 $ |
$ x_{268}^1, \overline{x_{64}}, $ $ \underline{x_{122}}, \overline{x_{60}} $ |
$ x_{264}^3 $ |
$ x_{264}^2, \overline{x_{63}}, $ $ \underline{x_{138}}, x_{123} $ |
$ x_{260}^4 $ |
$ x_{260}^3, \overline{x_{66}}, $ $ \underline{x_{161}}, x_{137} $ |
21 |
$ x_{277}^0 $ |
$ x_{21}, \overline{x_{62}}, \underline{x_{91}} $ |
$ x_{273}^1 $ |
$ x_{273}^0, \overline{x_{63}}, $ $ \underline{x_{104}}, x_{29} $ |
$ x_{269}^2 $ |
$ x_{269}^1, \overline{x_{65}}, $ $ \underline{x_{123}}, \overline{x_{61}} $ |
$ x_{265}^3 $ |
$ x_{265}^2, \overline{x_{64}}, $ $ \underline{x_{139}}, x_{124} $ |
$ x_{261}^4 $ |
$ x_{261}^3, \overline{x_{67}}, $ $ \underline{x_{162}}, x_{138} $ |
22 |
$ x_{278}^0 $ |
$ x_{22}, \overline{x_{63}}, \underline{x_{92}} $ |
$ x_{274}^1 $ |
$ x_{274}^0, \overline{x_{64}}, $ $ \underline{x_{105}}, x_{30} $ |
$ x_{270}^2 $ |
$ x_{270}^1, \overline{x_{66}}, $ $ \underline{x_{124}}, \overline{x_{62}} $ |
$ x_{266}^3 $ |
$ x_{266}^2, \overline{x_{65}}, $ $ \underline{x_{140}}, x_{125} $ |
$ x_{262}^4 $ |
$ x_{262}^3, \overline{x_{68}}, $ $ \underline{x_{163}}, x_{139} $ |
23 |
$ x_{279}^0 $ |
$ x_{23}, \overline{x_{64}}, \underline{x_{93}} $ |
$ x_{275}^1 $ |
$ x_{275}^0, \overline{x_{65}}, $ $ \underline{x_{106}}, x_{31} $ |
$ x_{271}^2 $ |
$ x_{271}^1, \overline{x_{67}}, $ $ \underline{x_{125}}, \overline{x_{63}} $ |
$ x_{267}^3 $ |
$ x_{267}^2, \overline{x_{66}}, $ $ \underline{x_{141}}, x_{126} $ |
$ x_{263}^4 $ |
$ x_{263}^3, \overline{x_{69}}, $ $ \underline{x_{164}}, x_{140} $ |
24 |
$ x_{280}^0 $ |
$ x_{24}, \overline{x_{65}}, \underline{x_{94}} $ |
$ x_{276}^1 $ |
$ x_{276}^0, \overline{x_{66}}, $ $ \underline{x_{107}}, x_{32} $ |
$ x_{272}^2 $ |
$ x_{272}^1, \overline{x_{68}}, $ $ \underline{x_{126}}, \overline{x_{64}} $ |
$ x_{268}^3 $ |
$ x_{268}^2, \overline{x_{67}}, $ $ \underline{x_{142}}, x_{127} $ |
$ x_{264}^4 $ |
$ x_{264}^3, \overline{x_{70}}, $ $ \underline{x_{165}}, x_{141} $ |
25 |
$ x_{281}^0 $ |
$ x_{25}, \overline{x_{66}}, \underline{x_{95}} $ |
$ x_{277}^1 $ |
$ x_{277}^0, \overline{x_{67}}, $ $ \underline{x_{108}}, x_{33} $ |
$ x_{273}^2 $ |
$ x_{273}^1, \overline{x_{69}}, $ $ \underline{x_{127}}, \overline{x_{65}} $ |
$ x_{269}^3 $ |
$ x_{269}^2, \overline{x_{68}}, $ $ \underline{x_{143}}, x_{128} $ |
$ x_{265}^4 $ |
$ x_{265}^3, \overline{x_{71}}, $ $ \underline{x_{166}}, x_{142} $ |
26 |
$ x_{282}^0 $ |
$ x_{26}, \overline{x_{67}}, \underline{x_{96}} $ |
$ x_{278}^1 $ |
$ x_{278}^0, \overline{x_{68}}, $ $ \underline{x_{109}}, x_{34} $ |
$ x_{274}^2 $ |
$ x_{274}^1, \overline{x_{70}}, $ $ \underline{x_{128}}, \overline{x_{66}} $ |
$ x_{270}^3 $ |
$ x_{270}^2, \overline{x_{69}}, $ $ \underline{x_{144}}, x_{129} $ |
$ x_{266}^4 $ |
$ x_{266}^3, \overline{x_{72}}, $ $ \underline{x_{167}}, x_{143} $ |
27 |
$ x_{283}^0 $ |
$ x_{27}, \overline{x_{68}}, \underline{x_{97}} $ |
$ x_{279}^1 $ |
$ x_{279}^0, \overline{x_{69}}, $ $ \underline{x_{110}}, x_{35} $ |
$ x_{275}^2 $ |
$ x_{275}^1, \overline{x_{71}}, $ $ \underline{x_{129}}, \overline{x_{67}} $ |
$ x_{271}^3 $ |
$ x_{271}^2, \overline{x_{70}}, $ $ \underline{x_{145}}, x_{130} $ |
$ x_{267}^4 $ |
$ x_{267}^3, \overline{x_{73}}, $ $ \underline{x_{168}}, x_{144} $ |
28 |
$ x_{284}^0 $ |
$ x_{28}, \overline{x_{69}}, \underline{x_{98}} $ |
$ x_{280}^1 $ |
$ x_{280}^0, \overline{x_{70}}, $ $ \underline{x_{111}}, x_{36} $ |
$ x_{276}^2 $ |
$ x_{276}^1, \overline{x_{72}}, $ $ \underline{x_{130}}, \overline{x_{68}} $ |
$ x_{272}^3 $ |
$ x_{272}^2, \overline{x_{71}}, $ $ \underline{x_{146}}, x_{131} $ |
$ x_{268}^4 $ |
$ x_{268}^3, \overline{x_{74}}, $ $ \underline{x_{169}}, x_{145} $ |
29 |
$ x_{285}^0 $ |
$ x_{29}, \overline{x_{70}}, \underline{x_{99}} $ |
$ x_{281}^1 $ |
$ x_{281}^0, \overline{x_{71}}, $ $ \underline{x_{112}}, x_{37} $ |
$ x_{277}^2 $ |
$ x_{277}^1, \overline{x_{73}}, $ $ \underline{x_{131}}, \overline{x_{69}} $ |
$ x_{273}^3 $ |
$ x_{273}^2, \overline{x_{72}}, $ $ \underline{x_{147}}, x_{132} $ |
$ x_{269}^4 $ |
$ x_{269}^3, \overline{x_{75}}, $ $ \underline{x_{170}}, x_{146} $ |
30 |
$ x_{286}^0 $ |
$ x_{30}, \overline{x_{71}}, \underline{x_{100}} $ |
$ x_{282}^1 $ |
$ x_{282}^0, \overline{x_{72}}, $ $ \underline{x_{113}}, x_{38} $ |
$ x_{278}^2 $ |
$ x_{278}^1, \overline{x_{74}}, $ $ \underline{x_{132}}, \overline{x_{70}} $ |
$ x_{274}^3 $ |
$ x_{274}^2, \overline{x_{73}}, $ $ \underline{x_{148}}, x_{133} $ |
$ x_{270}^4 $ |
$ x_{270}^3, \overline{x_{76}}, $ $ \underline{x_{171}}, x_{147} $ |
31 |
$ x_{287}^0 $ |
$ x_{31}, \overline{x_{72}}, \underline{x_{101}} $ |
$ x_{283}^1 $ |
$ x_{283}^0, \overline{x_{73}}, $ $ \underline{x_{114}}, x_{39} $ |
$ x_{279}^2 $ |
$ x_{279}^1, \overline{x_{75}}, $ $ \underline{x_{133}}, \overline{x_{71}} $ |
$ x_{275}^3 $ |
$ x_{275}^2, \overline{x_{74}}, $ $ \underline{x_{149}}, x_{134} $ |
$ x_{271}^4 $ |
$ x_{271}^3, x_{77}, $ $ x_{172}, x_{148} $ |
32 |
$ x_{288}^0 $ |
$ x_{32}, \overline{x_{73}}, \underline{x_{102}} $ |
$ x_{284}^1 $ |
$ x_{284}^0, \overline{x_{74}}, $ $ \underline{x_{115}}, x_{40} $ |
$ x_{280}^2 $ |
$ x_{280}^1, \overline{x_{76}}, $ $ \underline{x_{134}}, \overline{x_{72}} $ |
$ x_{276}^3 $ |
$ x_{276}^2, \overline{x_{75}}, $ $ \underline{x_{150}}, x_{135} $ |
$ x_{272}^4 $ |
$ x_{272}^3, x_{78}, $ $ x_{173}, x_{149} $ |
33 |
$ x_{289}^0 $ |
$ x_{33}, \overline{x_{74}}, \underline{x_{103}} $ |
$ x_{285}^1 $ |
$ x_{285}^0, \overline{x_{75}}, $ $ \underline{x_{116}}, x_{41} $ |
$ x_{281}^2 $ |
$ x_{281}^1, x_{77}, $ $ x_{135}, \overline{x_{73}} $ |
$ x_{277}^3 $ |
$ x_{277}^2, \overline{x_{76}}, $ $ \underline{x_{151}}, x_{136} $ |
$ x_{273}^4 $ |
$ x_{273}^3, x_{79}, $ $ x_{174}, x_{150} $ |
34 |
$ x_{290}^0 $ |
$ x_{34}, \overline{x_{75}}, \underline{x_{104}} $ |
$ x_{286}^1 $ |
$ \underline{x_{286}^0}, \overline{x_{76}}, $ $ \underline{x_{117}}, x_{42} $ |
$ x_{282}^2 $ |
$ x_{282}^1, x_{78}, $ $ x_{136}, \overline{x_{74}} $ |
$ x_{278}^3 $ |
$ x_{278}^2, x_{77}, $ $ x_{152}, x_{137} $ |
$ x_{274}^4 $ |
$ x_{274}^3, x_{80}, $ $ x_{175}, x_{151} $ |