-
Previous Article
Information set decoding in the Lee metric with applications to cryptography
- AMC Home
- This Issue
-
Next Article
Correlation distribution of a sequence family generalizing some sequences of Trachtenberg
Infinite families of 2-designs from a class of non-binary Kasami cyclic codes
1. | College of Mathematics and Statistics, Northwest Normal University, Lanzhou, Gansu 730070, China |
2. | Guangxi Key Laboratory of Cryptography and Information Security, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China |
3. | School of Mathematics, Southwest Jiaotong University, Chengdu, Sichuan 610000, China |
Combinatorial $ t $-designs have been an important research subject for many years, as they have wide applications in coding theory, cryptography, communications and statistics. The interplay between coding theory and $ t $-designs has been attracted a lot of attention for both directions. It is well known that a linear code over any finite field can be derived from the incidence matrix of a $ t $-design, meanwhile, that the supports of all codewords with a fixed weight in a code also may hold a $ t $-design. In this paper, by determining the weight distribution of a class of linear codes derived from non-binary Kasami cyclic codes, we obtain infinite families of $ 2 $-designs from the supports of all codewords with a fixed weight in these codes, and calculate their parameters explicitly.
References:
[1] |
E. F. Assmus Jr. and J. D. Key, Designs and Their Codes, Cambridge University Press, Cambridge, 1992.
doi: 10.1017/CBO9781316529836.![]() ![]() ![]() |
[2] |
E. F. Assmus Jr. and H. F. Mattson Jr,
New $5$-designs, J. Combinatorial Theory, 6 (1969), 122-152.
doi: 10.1016/S0021-9800(69)80115-8. |
[3] |
E. F. Assmus Jr. and H. F. Mattson Jr,
Coding and combinatorics, SIAM Rev., 16 (1974), 349-388.
doi: 10.1137/1016056. |
[4] |
M. Antweiler and L. Bömer,
Complex sequences over GF$ {(p^M)} $ with a two-level autocorrelation function and a large linear span, IEEE Trans. Inform. Theory, 38 (1992), 120-130.
doi: 10.1109/18.108256. |
[5] |
T. Beth, D. Jungnickel and H. Lenz, Design Theory, Vol. II. Encyclopedia of Mathematics and its Applications, Vol. 78, 2nd edition, Cambridge University Press, Cambridge, 1999.
doi: 10.1017/CBO9781139507660.003. |
[6] |
C. Ding, Designs from Linear Codes, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2019.
doi: 10.1142/11101. |
[7] |
C. Ding,
Infinite families of $3$-designs from a type of five-weight code, Des. Codes Cryptogr., 86 (2018), 703-719.
doi: 10.1007/s10623-017-0352-6. |
[8] |
C. Ding and C. Li,
Infinite families of $2$-designs and $3$-designs from linear codes, Discrete Math., 340 (2017), 2415-2431.
doi: 10.1016/j.disc.2017.05.013. |
[9] |
K. Ding and C. Ding,
A class of two-weight and three-weight codes and their applications in secret sharing, IEEE Trans. Inform. Theory, 61 (2015), 5835-5842.
doi: 10.1109/TIT.2015.2473861. |
[10] |
X. Du, R. Wang, C. Tang and Q. Wang, Infinite families of $2$-designs from two classes of linear codes, preprint, arXiv: 1903.07459. |
[11] |
X. Du, R. Wang, C. Tang and Q. Wang, Infinite families of $2$-designs from two classes of binary cyclic codes with three nonzeros, preprint, arXiv: 1903.08153. |
[12] |
X. Du, R. Wang and C. Fan,
Infinite families of $2$-designs from a class of cyclic codes, J. Comb. Des., 28 (2020), 157-170.
doi: 10.1002/jcd.21682. |
[13] |
R. W. Fitzgerald and J. L. Yucas,
Sums of Gauss sums and weights of irreducible codes, Finite Fields Appl., 11 (2005), 89-110.
doi: 10.1016/j.ffa.2004.06.002. |
[14] |
W. C. Huffman and V. Pless, Fundamentals of Error-correcting Codes, Cambridge University Press, Cambridge, 2003.
doi: 10.1017/CBO9780511807077.![]() ![]() ![]() |
[15] |
K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, $2^nd$ edition, Graduate Texts in Mathematics, Vol. 84, Springer-Verlag, New York, 1990. |
[16] |
T. Kasami, S. Lin and W. W. Peterson,
Some results on cyclic codes which are invariant under the affine group and their applications, Information and Control, 11 (1967), 475-496.
doi: 10.1016/S0019-9958(67)90691-2. |
[17] |
J. Luo, Y. Tang, and H. Wang, Exponential sums, cycle codees and sequences: the odd characteristic Kasami case, preprint, arXiv: 0902.4508v1 [cs.IT]. |
[18] |
R. Lidl and H. Niederreiter, Finite Fields, 2nd edition, Encyclopedia of Mathematics and its Applications, Vol. 20, Cambridge University Press, Cambridge, 1997. |
[19] |
F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-correcting Codes, I, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977. |
[20] |
C. Reid and A. Rosa, Steiner systems $ {S} (2, 4, v) $-a survey, The Electronic Journal of Combinatorics, 18 (2010), 1–34. https://www.researchgate.net/publication/266996333.
doi: 10.37236/39. |
[21] |
J. Serrin, C. J. Colbourn and R. Mathon, Steiner systems, in Handbook of Combinatorial Designs, $2^nd$ edition, Chapman and Hall/CRC, (2006), 128–135. https://www.researchgate.net/publication/329786723. |
[22] |
V. D. Tonchev, Codes and designs, in Handbook of Coding Theory, Vol. I, II North-Holland, Amsterdam, (1998), 1229–1267. https://www.researchgate.net/publication/268549395. |
[23] |
V. D. Tonchev, Codes, in Handbook of Combinatorial Designs, $2^nd$ edition, Chapman and Hall/CRC, Boca Raton, FL, 2007. |
[24] |
M. van der Vlugt,
Hasse-Davenport curves, Gauss sums, and weight distributions of irreducible cyclic codes, J. Number Theory, 55 (1995), 145-159.
doi: 10.1006/jnth.1995.1133. |
show all references
References:
[1] |
E. F. Assmus Jr. and J. D. Key, Designs and Their Codes, Cambridge University Press, Cambridge, 1992.
doi: 10.1017/CBO9781316529836.![]() ![]() ![]() |
[2] |
E. F. Assmus Jr. and H. F. Mattson Jr,
New $5$-designs, J. Combinatorial Theory, 6 (1969), 122-152.
doi: 10.1016/S0021-9800(69)80115-8. |
[3] |
E. F. Assmus Jr. and H. F. Mattson Jr,
Coding and combinatorics, SIAM Rev., 16 (1974), 349-388.
doi: 10.1137/1016056. |
[4] |
M. Antweiler and L. Bömer,
Complex sequences over GF$ {(p^M)} $ with a two-level autocorrelation function and a large linear span, IEEE Trans. Inform. Theory, 38 (1992), 120-130.
doi: 10.1109/18.108256. |
[5] |
T. Beth, D. Jungnickel and H. Lenz, Design Theory, Vol. II. Encyclopedia of Mathematics and its Applications, Vol. 78, 2nd edition, Cambridge University Press, Cambridge, 1999.
doi: 10.1017/CBO9781139507660.003. |
[6] |
C. Ding, Designs from Linear Codes, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2019.
doi: 10.1142/11101. |
[7] |
C. Ding,
Infinite families of $3$-designs from a type of five-weight code, Des. Codes Cryptogr., 86 (2018), 703-719.
doi: 10.1007/s10623-017-0352-6. |
[8] |
C. Ding and C. Li,
Infinite families of $2$-designs and $3$-designs from linear codes, Discrete Math., 340 (2017), 2415-2431.
doi: 10.1016/j.disc.2017.05.013. |
[9] |
K. Ding and C. Ding,
A class of two-weight and three-weight codes and their applications in secret sharing, IEEE Trans. Inform. Theory, 61 (2015), 5835-5842.
doi: 10.1109/TIT.2015.2473861. |
[10] |
X. Du, R. Wang, C. Tang and Q. Wang, Infinite families of $2$-designs from two classes of linear codes, preprint, arXiv: 1903.07459. |
[11] |
X. Du, R. Wang, C. Tang and Q. Wang, Infinite families of $2$-designs from two classes of binary cyclic codes with three nonzeros, preprint, arXiv: 1903.08153. |
[12] |
X. Du, R. Wang and C. Fan,
Infinite families of $2$-designs from a class of cyclic codes, J. Comb. Des., 28 (2020), 157-170.
doi: 10.1002/jcd.21682. |
[13] |
R. W. Fitzgerald and J. L. Yucas,
Sums of Gauss sums and weights of irreducible codes, Finite Fields Appl., 11 (2005), 89-110.
doi: 10.1016/j.ffa.2004.06.002. |
[14] |
W. C. Huffman and V. Pless, Fundamentals of Error-correcting Codes, Cambridge University Press, Cambridge, 2003.
doi: 10.1017/CBO9780511807077.![]() ![]() ![]() |
[15] |
K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, $2^nd$ edition, Graduate Texts in Mathematics, Vol. 84, Springer-Verlag, New York, 1990. |
[16] |
T. Kasami, S. Lin and W. W. Peterson,
Some results on cyclic codes which are invariant under the affine group and their applications, Information and Control, 11 (1967), 475-496.
doi: 10.1016/S0019-9958(67)90691-2. |
[17] |
J. Luo, Y. Tang, and H. Wang, Exponential sums, cycle codees and sequences: the odd characteristic Kasami case, preprint, arXiv: 0902.4508v1 [cs.IT]. |
[18] |
R. Lidl and H. Niederreiter, Finite Fields, 2nd edition, Encyclopedia of Mathematics and its Applications, Vol. 20, Cambridge University Press, Cambridge, 1997. |
[19] |
F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-correcting Codes, I, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977. |
[20] |
C. Reid and A. Rosa, Steiner systems $ {S} (2, 4, v) $-a survey, The Electronic Journal of Combinatorics, 18 (2010), 1–34. https://www.researchgate.net/publication/266996333.
doi: 10.37236/39. |
[21] |
J. Serrin, C. J. Colbourn and R. Mathon, Steiner systems, in Handbook of Combinatorial Designs, $2^nd$ edition, Chapman and Hall/CRC, (2006), 128–135. https://www.researchgate.net/publication/329786723. |
[22] |
V. D. Tonchev, Codes and designs, in Handbook of Coding Theory, Vol. I, II North-Holland, Amsterdam, (1998), 1229–1267. https://www.researchgate.net/publication/268549395. |
[23] |
V. D. Tonchev, Codes, in Handbook of Combinatorial Designs, $2^nd$ edition, Chapman and Hall/CRC, Boca Raton, FL, 2007. |
[24] |
M. van der Vlugt,
Hasse-Davenport curves, Gauss sums, and weight distributions of irreducible cyclic codes, J. Number Theory, 55 (1995), 145-159.
doi: 10.1006/jnth.1995.1133. |
Weight | Multiplicity |
|
|
Weight | Multiplicity |
|
|
Weight | Multiplicity |
|
|
Weight | Multiplicity |
|
|
Weight | Multiplicity |
|
|
Weight | Multiplicity |
|
|
Value | Corresponding Condition |
|
|
Value | Corresponding Condition |
|
|
Value | Multiplicity |
|
|
Value | Multiplicity |
|
|
Value | Multiplicity |
|
|
Value | Multiplicity |
|
|
Value | Multiplicity |
|
|
Value | Multiplicity |
|
|
Value | Multiplicity |
|
|
Value | Multiplicity |
|
|
Value | Multiplicity |
|
|
Value | Multiplicity |
|
|
Value | Multiplicity |
|
|
Value | Multiplicity |
|
|
[1] |
Yan Liu, Xiwang Cao. Infinite families of 2-designs from a class of affine-invariant codes. Advances in Mathematics of Communications, 2022 doi: 10.3934/amc.2022011 |
[2] |
Xiaoni Du, Rong Wang, Chunming Tang, Qi Wang. Infinite families of 2-designs from two classes of binary cyclic codes with three nonzeros. Advances in Mathematics of Communications, 2022, 16 (1) : 157-168. doi: 10.3934/amc.2020106 |
[3] |
Dean Crnković, Bernardo Gabriel Rodrigues, Sanja Rukavina, Loredana Simčić. Self-orthogonal codes from orbit matrices of 2-designs. Advances in Mathematics of Communications, 2013, 7 (2) : 161-174. doi: 10.3934/amc.2013.7.161 |
[4] |
Fengwei Li, Qin Yue, Fengmei Liu. The weight distributions of constacyclic codes. Advances in Mathematics of Communications, 2017, 11 (3) : 471-480. doi: 10.3934/amc.2017039 |
[5] |
Pankaj Kumar, Monika Sangwan, Suresh Kumar Arora. The weight distributions of some irreducible cyclic codes of length $p^n$ and $2p^n$. Advances in Mathematics of Communications, 2015, 9 (3) : 277-289. doi: 10.3934/amc.2015.9.277 |
[6] |
Fengwei Li, Qin Yue, Xiaoming Sun. The values of two classes of Gaussian periods in index 2 case and weight distributions of linear codes. Advances in Mathematics of Communications, 2021, 15 (1) : 131-153. doi: 10.3934/amc.2020049 |
[7] |
Tonghui Zhang, Hong Lu, Shudi Yang. Two-weight and three-weight linear codes constructed from Weil sums. Mathematical Foundations of Computing, 2022, 5 (2) : 129-144. doi: 10.3934/mfc.2021041 |
[8] |
Chengju Li, Qin Yue, Ziling Heng. Weight distributions of a class of cyclic codes from $\Bbb F_l$-conjugates. Advances in Mathematics of Communications, 2015, 9 (3) : 341-352. doi: 10.3934/amc.2015.9.341 |
[9] |
Jamshid Moori, Amin Saeidi. Some designs and codes invariant under the Tits group. Advances in Mathematics of Communications, 2017, 11 (1) : 77-82. doi: 10.3934/amc.2017003 |
[10] |
Long Yu, Hongwei Liu. A class of $p$-ary cyclic codes and their weight enumerators. Advances in Mathematics of Communications, 2016, 10 (2) : 437-457. doi: 10.3934/amc.2016017 |
[11] |
Petr Lisoněk, Layla Trummer. Algorithms for the minimum weight of linear codes. Advances in Mathematics of Communications, 2016, 10 (1) : 195-207. doi: 10.3934/amc.2016.10.195 |
[12] |
Sara D. Cardell, Joan-Josep Climent, Daniel Panario, Brett Stevens. A construction of $ \mathbb{F}_2 $-linear cyclic, MDS codes. Advances in Mathematics of Communications, 2020, 14 (3) : 437-453. doi: 10.3934/amc.2020047 |
[13] |
Toshiharu Sawashima, Tatsuya Maruta. Nonexistence of some ternary linear codes with minimum weight -2 modulo 9. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021052 |
[14] |
Kanat Abdukhalikov. On codes over rings invariant under affine groups. Advances in Mathematics of Communications, 2013, 7 (3) : 253-265. doi: 10.3934/amc.2013.7.253 |
[15] |
Gerardo Vega, Jesús E. Cuén-Ramos. The weight distribution of families of reducible cyclic codes through the weight distribution of some irreducible cyclic codes. Advances in Mathematics of Communications, 2020, 14 (3) : 525-533. doi: 10.3934/amc.2020059 |
[16] |
Dandan Wang, Xiwang Cao, Gaojun Luo. A class of linear codes and their complete weight enumerators. Advances in Mathematics of Communications, 2021, 15 (1) : 73-97. doi: 10.3934/amc.2020044 |
[17] |
Sergio R. López-Permouth, Steve Szabo. On the Hamming weight of repeated root cyclic and negacyclic codes over Galois rings. Advances in Mathematics of Communications, 2009, 3 (4) : 409-420. doi: 10.3934/amc.2009.3.409 |
[18] |
Ricardo A. Podestá, Denis E. Videla. The weight distribution of irreducible cyclic codes associated with decomposable generalized Paley graphs. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021002 |
[19] |
Lanqiang Li, Shixin Zhu, Li Liu. The weight distribution of a class of p-ary cyclic codes and their applications. Advances in Mathematics of Communications, 2019, 13 (1) : 137-156. doi: 10.3934/amc.2019008 |
[20] |
Chengju Li, Sunghan Bae, Shudi Yang. Some two-weight and three-weight linear codes. Advances in Mathematics of Communications, 2019, 13 (1) : 195-211. doi: 10.3934/amc.2019013 |
2021 Impact Factor: 1.015
Tools
Metrics
Other articles
by authors
[Back to Top]