Advanced Search
Article Contents
Article Contents

A generic construction of rotation symmetric bent functions

  • * Corresponding author: Nian Li

    * Corresponding author: Nian Li 
This work was supported by the National Natural Science Foundation of China (Nos. 61702166, 61761166010) and Major Technological Innovation Special Project of Hubei Province (No. 2019ACA144)
Abstract Full Text(HTML) Related Papers Cited by
  • Rotation symmetric bent functions are a special class of Boolean functions, and their construction is of theoretical and practical interest. In this paper, we propose a generic construction of rotation symmetric bent functions by modifying the support of a known class of quadratic rotation symmetric bent functions, which generalizes some earlier works. Moreover, many infinite classes of rotation symmetric bent functions with maximal algebraic degree can be easily obtained from our construction.

    Mathematics Subject Classification: Primary: 03G05, 06E30.


    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] C. Carlet, Boolean functions for cryptography and error correcting codes, in Boolean Models and Methods (eds. Y. Crama and P. L. Hammer), Cambridge, U.K.: Cambridge Univ. Press, (2010), 257–397.
    [2] C. Carlet, G. P. Gao and W. F. Liu, Results on constructions of rotation symmetric bent and semi-bent functions,, in Sequences and Their Applications–SETA 2014, Springer International Publishing, Switzerland, 8865 (2014), 21–33. doi: 10.1007/978-3-319-12325-7_2.
    [3] C. CarletG. P. Gao and W. F. Liu, A secondary construction and a transformation on rotation symmetric functions, and their action on bent and semi-bent functions, J. Combin. Theory Ser. A, 127 (2014), 161-175.  doi: 10.1016/j.jcta.2014.05.008.
    [4] C. Carlet and S. Mesnager, Four decades of research on bent functions, Des. Codes Cryptogr., 78 (2016), 5-50.  doi: 10.1007/s10623-015-0145-8.
    [5] T. W. Cusick and  P. StănicăCryptographic Boolean Functions and Applications, Academic Press, San Diego, 2009. 
    [6] J. F. Dillon, Elementary Hadamard Difference Sets, PhD Thesis, University of Maryland, 1974.
    [7] G. P. GaoT. W. Cusick and W. F. Liu, Families of rotation symmetric functions with useful cryptographic properties, IET Inf. Secur., 8 (2014), 297-302.  doi: 10.1049/iet-ifs.2013.0241.
    [8] G. P. GaoX. Y. ZhangW. F. Liu and C. Carlet, Constructions of quadratic and cubic rotation symmetric bent functions, IEEE Trans. Inf. Theory, 58 (2012), 4908-4913.  doi: 10.1109/TIT.2012.2193377.
    [9] T. Helleseth and P. Kumar, Sequences with low correlation, In Handbook of Coding Theory, Handbook of coding North-Holland, Amsterdam, 1 (1998), 1765–1853.
    [10] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Amsterdam, The Netherlands, North-Holland, 1977.
    [11] J. Pieprzyk and C. X. Qu, Fast Hashing and rotation symmetric functions, J. Univ. Comput. Sci., 5 (1999), 20-31. 
    [12] V. RijmenP. Barreto and D. Filho, Rotation symmetry in algebraically generated cryptographic substitution tables, Inf. Process. Lett., 106 (2008), 246-250.  doi: 10.1016/j.ipl.2007.09.012.
    [13] O. S. Rothaus, On "bent" functions, J. Combin. Theory Ser. A, 20 (1976), 300-305.  doi: 10.1016/0097-3165(76)90024-8.
    [14] P. Stănică and S. Maitra, Rotation symmetric Boolean Functions-Count and Cryptographic Properties, Discr. Appl. Math., 156 (2008), 1567-1580.  doi: 10.1016/j.dam.2007.04.029.
    [15] S. H. Su, A new construction of rotation symmetric bent functions with maximal algebraic degree, Adv. Math. Commun., 13 (2019), 253-265.  doi: 10.3934/amc.2019017.
    [16] S. H. Su and X. H. Tang, Symmetric constructions of rotation symmetric bent functions, 2-rotation symmetric bent functions, and bent idempotent functions, IEEE Trans. Inf. Theory, 63 (2017), 4658-4667.  doi: 10.1109/TIT.2016.2621751.
    [17] X. Y. ZengL. HuW. F. JiangQ. Yue and X. W. Cao, The weight distribution of a class of $p$-ary cyclic codes, Finite Fields Appl., 16 (2010), 56-73.  doi: 10.1016/j.ffa.2009.12.001.
    [18] W. Y. Zhang and G. Y. Han, Construction of rotation symmetric bent functions with maximum algebraic degree, Science China Information Sciences, 61 (2018), 1–3.
    [19] W. Y. ZhangZ. H. Xing and K. Q. Feng, A construction of bent functions with optimal algebraic degree and large symmetric group, Adv. Math. Commun., 14 (2020), 23-33.  doi: 10.3934/amc.2020003.
  • 加载中

Article Metrics

HTML views(841) PDF downloads(313) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint