[1]
|
T. Abualrub and I. Siap, Reversible cyclic codes over $\mathbb{Z}_{4}$, Australas. J. Comb., 38 (2007), 195-205.
|
[2]
|
T. Abualrub and I. Siap, Cyclic codes over the rings $\mathbb{Z}_{2} +u\mathbb{Z}_{2}$ and $\mathbb{Z}_{2} +u\mathbb{Z}_{2}+u^{2}\mathbb{Z}_{2}$, Des. Codes Cryptogr., 42 (2007), 273-287.
doi: 10.1007/s10623-006-9034-5.
|
[3]
|
T. Abualrub, I. Siap and N. Aydin, $\mathbb{Z}_{2}\mathbb{Z}_{4}$-Additive cyclic codes, IEEE Trans. Inform. Theory, 60 (2014), 1508-1514.
doi: 10.1109/TIT.2014.2299791.
|
[4]
|
T. Asamov and N. Aydin, Table of Z4 codes, Online available at http://http://www.asamov.com/Z4Codes. Accessed on 2019-12-12.
|
[5]
|
N. Aydin and H. Halilovic, A generalization of quasi-twisted codes: Multi-twisted codes, Finite Fields Appl., 45 (2017), 96-106.
doi: 10.1016/j.ffa.2016.12.002.
|
[6]
|
I. Aydogdu, T. Abualrub and I. Siap, On $\mathbb{Z}_{2}\mathbb{Z}_{2}[u]$-additive codes, Int. J. Comput. Math., 92 (2015), 1806-1814.
doi: 10.1080/00207160.2013.859854.
|
[7]
|
I. Aydogdu, T. Abualrub and I. Siap, The $\mathbb{Z}_{2}\mathbb{Z}_{2}[u]$-cyclic and constacyclic codes, IEEE Trans. Inform. Theory, 63 (2017), 4883-4893.
doi: 10.1109/TIT.2016.2632163.
|
[8]
|
I. Aydogdu, T. Abualrub and I. Siap, On the structure of $\mathbb{Z}_{2}\mathbb{Z}_{2}[u^{3}]$-linear and cyclic codes, Finite Fields Appl., 48 (2017), 241-260.
doi: 10.1016/j.ffa.2017.03.001.
|
[9]
|
I. Aydogdu and I. Siap, The structure of $\mathbb{Z}_2\mathbb{Z}_{2^s}$-additive codes: Bounds on the minimum distance, Appl. Math. Inf. Sci., 7 (2013), 2271-2278.
doi: 10.12785/amis/070617.
|
[10]
|
I. Aydogdu and I. Siap, On $\mathbb{Z}_{p^{r}}\mathbb{Z}_{p^{s}}$-additive codes, Linear Multilinear Algebra, 63 (2015), 2089-2102.
doi: 10.1080/03081087.2014.952728.
|
[11]
|
I. Aydogdu and F. Gursoy, On $\mathbb{Z}_{2}\mathbb{Z}_{4}[\xi]$-Skew cyclic codes, preprint (2017), arXiv: 1711.01816v1.
|
[12]
|
N. BenBelkacem, F. M. Ezerman, T. Abualrub and A. Batoul, Skew Cyclic Codes over $ \mathbb{F}_4R, $, preprint (2017), arXiv: 1812.10692.
|
[13]
|
J. Bierbrauer, The theory of cyclic codes and a generalization to additive codes, Des. Codes Cryptogr, 25 (2002), 189-206.
doi: 10.1023/A:1013808515797.
|
[14]
|
J. Borges, C. Fernandez-Cordoba, J. Pujol and J. Rifa, $\mathbb{Z}_{2}\mathbb{Z}_{4}$-linear codes: Geneartor matrices and duality, Des. Codes Cryptogr., 54 (2010), 167-179.
doi: 10.1007/s10623-009-9316-9.
|
[15]
|
J. Borges, C. Fernandez-Cordoba and R. Ten-Valls, $\mathbb{Z}_{2}\mathbb{Z}_{4}$-additive cyclic codes, generator polynomials and dual codes, IEEE Trans. Inform. Theory, 62 (2016), 6348-6354.
doi: 10.1109/TIT.2016.2611528.
|
[16]
|
J. Borges and C. Fernandez-Cordoba, A characterization of $\mathbb{Z}_{2}\mathbb{Z}_{2}[u]$-linear codes, Des. Codes Cryptogr., 86 (2018), 1377-1389.
doi: 10.1007/s10623-017-0401-1.
|
[17]
|
D. Boucher, P. Solé and F. Ulmer, Skew constacyclic codes over Galois rings, Adv. Math. Commun., 2 (2008), 273-292.
doi: 10.3934/amc.2008.2.273.
|
[18]
|
P. Delsarte, An Algebraic Approach to Association Schemes of Coding Theory, Philips Res. Rep., Supplement, 1973.
|
[19]
|
P. Delsarte and V. I. Levenshtein, Association schemes and coding theory, IEEE Trans. Inform. Theory, 44 (1998), 2477-2504.
doi: 10.1109/18.720545.
|
[20]
|
M. Esmaeilia and S. Yari, Generalized quasi-cyclic codes: Structrural properties and code construction, Algebra Engrg. Comm. Commput., 20 (2009), 159-173.
doi: 10.1007/s00200-009-0095-3.
|
[21]
|
C. Fernandez-Cordoba, J. Pujol and M. Villanueva, $\mathbb{Z}_2\mathbb{Z}_4$-linear codes: Rank and kernel, Des. Codes Cryptogr., 56 (2010), 43-59.
doi: 10.1007/s10623-009-9340-9.
|
[22]
|
H. Islam and O. Prakash, On $\mathbb{Z}_{p}\mathbb{Z}_{p}[u, v]$-additive cyclic and constacyclic codes, preprint (2019), arXiv: 1905.06686v1.
|
[23]
|
P. Li, W. Dai and X. Kai, On $\mathbb{Z}_{2}\mathbb{Z}_{2}[u]$-$(1+u)$-additive constacyclic
|
[24]
|
B. R. McDonald, Finite Rings with Identity, Marcel Dekker Inc., New York, 1974.
|
[25]
|
F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, North-Holland, Amsterdam, 1977.
|
[26]
|
H. Rifa-Pous, J. Rifa and L. Ronquillo, $\mathbb{Z}_2\mathbb{Z}_4$-additive perfect codes in steganography, Adv. Math. Commun., 5 (2011), 425-433.
doi: 10.3934/amc.2011.5.425.
|
[27]
|
A. Sharma and M. Bhaintwal, A class of skew-constacyclic codes over $\mathbb{Z}_4+u\mathbb{Z}_4$, Int. J. Inf. Coding Theory, 4 (2017), 289-303.
doi: 10.1504/IJICOT.2017.086918.
|
[28]
|
A. Sharma and M. Bhaintwal, $\mathbb{F}_3R$-skew cyclic codes, Int. J. Inf. Coding Theory, 3 (2016), 234-251.
doi: 10.1504/IJICOT.2016.076967.
|
[29]
|
M. Shi, A. Alahmadi and P. Solé, Codes and Rings: Theory and Practice, Academic Press, 2017.
|
[30]
|
M. Shi, R. Wu and D. S. Krotov, On $\mathbb{Z}_p\mathbb{Z}_{p^k}$-additive codes and their duality, IEEE Trans. Inf. Theory, 65 (2018), 3842-3847.
doi: 10.1109/TIT.2018.2883759.
|
[31]
|
B. Srinivasulu and B. Maheshanand, The $\mathbb{Z}_{2}(\mathbb{Z}_{2}+u\mathbb{Z}_{2})$-additive cyclic codes and their duals, Discrete Math. Algorithm. Appl., 8 (2016), 1650027, 19 pp.
doi: 10.1142/S1793830916500270.
|
[32]
|
T. Yao and S. Zhu, $\mathbb{Z}_p\mathbb{Z}_{p^s}$-additive cyclic codes are asymptotically good, Cryptogr. Commun., 12 (2020), 253-264.
doi: 10.1007/s12095-019-00397-z.
|
[33]
|
T. Yao, S. Zhu and X. Kai, Asymptotically good $\mathbb{Z}_{p^r}\mathbb{Z}_{p^s}$-additive cyclic codes, Finite Fields Appl., 63 (2020), 101633, 15 pp.
doi: 10.1016/j.ffa.2020.101633.
|
[34]
|
B. Yildiz and N. Aydin, On cyclic codes over $\mathbb{ Z}_4+u\mathbb{Z}_4$ and their $\mathbb{Z}_4$-images, Int. J. Inf. Coding Theory, 2 (2014), 226-237.
doi: 10.1504/IJICOT.2014.066107.
|
[35]
|
Félix Ulmer's publication list, http://felixulmer.epizy.com/fu_papers.html.
|