Article Contents
Article Contents

# Additive and linear conjucyclic codes over ${\mathbb{F}}_4$

• * Corresponding author: Steven T. Dougherty
• Conjucyclic codes were first introduced by Calderbank, Rains, Shor and Sloane in [1] because of their applications in quantum error-correction. In this paper, we study linear and additive conjucyclic codes over the finite field ${\mathbb{F}}_{4}$ and produce a duality for which the orthogonal, with respect to that duality, of conjucyclic codes is conjucyclic. Moreover, we show that this is not the case for other standard dualities. We show that additive conjucyclic codes are the only non-trivial conjucyclic codes over ${\mathbb{F}}_{4}$ and we use a linear algebraic approach to classify these codes. We will also show that additive conjucyclic codes of length $n$ over ${\mathbb{F}}_{4}$ are isomorphic to binary cyclic codes of length $2n.$

Mathematics Subject Classification: Primary:11T71, 94B15.

 Citation:

• Table 1.  Conjucyclic codes of length 3

 The code $C$ Basis $V_{1}=0$ $V_{M}=\mathbb{F}_{4}^{3}$ $\left\{ \left( 1,0,0\right) ,\left( w,0,0\right) ,\left( 0,1,0\right) ,\left( 0,w,0\right) ,\left( 0,0,1\right) ,\left( 0,0,w\right) \right\}$ $V_{f}$ $\left\{ \left( 1,1,1\right) \right\}$ $V_{g}$ $\left\{ \left( 1,1,0\right) ,\left( 1,0,1\right) \right\}$ $V_{f^{2}}$ $\left\{ \left( 1,1,1\right) ,\left( w,1+w,w\right) \right\}$ $V_{g^{2}}$ $\left\{ \left( 1,1,0\right) ,\left( 1+\omega ,\omega ,0\right) ,\left( 1,0,1\right) ,\left( \omega ,0,\omega \right) \right\}$ $V_{fg}$ $\left\{ \left( 1,0,0\right) ,\left( 0,1,0\right) ,\left( 0,0,1\right) \right\}$ $V_{f^{2}g}$ $\left\{ \left( 1,0,0\right) ,\left( 0,1,0\right) ,\left( 0,0,1\right) ,\left( w,w,w\right) \right\}$ $V_{fg^{2}}$ $\left\{ \left( 1,0,0\right) ,\left( 0,1,0\right) ,\left( 0,0,1\right) ,\left( w,w,0\right) ,\left( w,0,w\right) \right\}$
•  [1] A. R. Calderbank, E. Rains, P. W. Shor and N. J. A. Sloane, Quantum error correction via codes over ${\mathbb{F}}_{4}$, IEEE Trans. Inform. Theory, 44 (1998), 1369-1387.  doi: 10.1109/18.681315. [2] S. T. Dougherty, Algebraic Coding Theory over Finite Commutative Rings, SpringerBriefs in Mathematics, Springer, Cham, 2017. doi: 10.1007/978-3-319-59806-2. [3] S. T. Dougherty, J.-L. Kim and N. Lee, Additive self-dual codes over fields of even order, Bull. Korean Math. Soc., 55 (2018), 341-357.  doi: 10.4134/BKMS.b160842. [4] S. T. Dougherty and S. Meyers, Orthogonality from Group Characters, work in progress. [5] T. W. Hungerford, Algebra, Graduate Texts in Mathematics, Vol. 73, Springer-Verlag, New York-Berlin, 1980. [6] J.-L. Kim and N. Lee, Secret sharing schemes based on additive codes over ${\mathbb{F}}_{4}$, Appl. Algebra Engrg. Comm. Comput., 28 (2017), 79-97.  doi: 10.1007/s00200-016-0296-5. [7] D. Radkova and A. J. Van Zanten, Constacyclic codes as invariant subspaces, Linear Algebra Appl., 430 (2009), 855-864.  doi: 10.1016/j.laa.2008.09.036.

Tables(1)