[1]
|
M. Ashraf and G. Mohammad, Construction of quantum codes from cyclic codes over $\mathbb{F}_{p} +v\mathbb{F}_{p}$, Int. J. Inf. Coding Theory, 3 (2015), 137-144.
doi: 10.1504/IJICOT.2015.072627.
|
[2]
|
M. Ashraf and G. Mohammad, Quantum codes from cyclic codes over $\mathbb{F}_{q}+u\mathbb{F}_{q}+v\mathbb{F}_{q}+uv\mathbb{F}_{q}$, Quantum Inf. Process., 15 (2016), 4089-4098.
doi: 10.1007/s11128-016-1379-8.
|
[3]
|
M. Ashraf and G. Mohammad, Quantum codes over $\mathbb{F}_{p}$ from cyclic codes over $\mathbb{F}_{p}[u,v]/\langle u^{2}-1,v^{3}-v,uv-vu\rangle$, Cryptogr. Commun., 11 (2019), 325-335.
doi: 10.1007/s12095-018-0299-0.
|
[4]
|
W. Bosma and J. Cannon, Handbook of Magma Functions, University of Sydney, 1995.
|
[5]
|
A. R. Calderbank, E. M. Rains, P. M. Shor and N. J. A. Sloane, Quantum error correction via codes over $GF(4)$, IEEE Trans. Inform. Theory, 44 (1998), 1369-1387.
doi: 10.1109/18.681315.
|
[6]
|
Y. Cengellenmis and A. Dertli, The Quantum Codes over $\mathbb{F}_q$ and quantum quasi-cyclic codes over $\mathbb{F}_q$, Math. Sci. Appl. E-Notes, 7 (2019), 87-93.
|
[7]
|
Y. Cengellenmis, A. Dertli and S. T. Dougherty, Codes over an infinite family of rings with a Gray map, Des. Codes Cryptogr., 72 (2014), 559-580.
doi: 10.1007/s10623-012-9787-y.
|
[8]
|
A. Dertli, Y. Cengellenmis and S. Eren, On quantum codes obtained from cyclic codes over $A_2$, Int. J. Quantum Inf., 13 (2015), 1550031, 9 pp.
doi: 10.1142/S0219749915500318.
|
[9]
|
M. F. Ezerman, S. Ling, B. Qzkaya and P. Sole, Good stabilizer codes from quasi-cyclic codes over $\mathbb{F}_5$ and $\mathbb{F}_9$, IEEE International Symposium on Information Theory (ISIT), Paris, France, 2019, 2898-2902.
doi: 10.1109/ISIT.2019.8849416.
|
[10]
|
Y. Edel, Some good quantum twisted codes, https://www.mathi.uni-heidelberg.de/ yves/Matritzen/QTBCH/QTBCHIndex.html.,
|
[11]
|
J. Gao, Quantum codes from cyclic codes over $\mathbb{F}_{q}+v\mathbb{F}_{q}+v^{2}\mathbb{F}_{q}+v^{3}\mathbb{F}_{q}$, Int. J. Quantum Inf., 13 (2015), 1550063(1-8).
doi: 10.1142/S021974991550063X.
|
[12]
|
J. Gao and Y. Wang, $u$-Constacyclic codes over $\mathbb{F}_{p}+u\mathbb{F}_{p}$ and their applications of constructing new non-binary quantum codes, Quantum Inf. Process., 17 (2018), Art. 4, 9 pp.
doi: 10.1007/s11128-017-1775-8.
|
[13]
|
Y. Gao, J. Gao and F. W. Fu, On Quantum codes from cyclic codes over the ring $\mathbb{F}_{q} +v_1\mathbb{F}_{q}+\dots+v_r\mathbb{F}_{q}$, Appl. Algebra Engrg. Comm. Comput., 30 (2019), 161-174.
doi: 10.1007/s00200-018-0366-y.
|
[14]
|
G. Gaurdia and R. Palazzo Jr., Constructions of new families of nonbinary CSS codes, Discrete Math., 310 (2010), 2935-2945.
doi: 10.1016/j.disc.2010.06.043.
|
[15]
|
D. Gottesman, An introduction to quantum error-correction, Proc. Symp. Appl. Math., 68 (2010), 13-27.
doi: 10.1090/psapm/068/2762145.
|
[16]
|
M. Grassl and T. Beth, On optimal quantum codes, Int. J. Quantum Inf., 2 (2004), 55-64.
doi: 10.1007/s11128-005-0006-x.
|
[17]
|
M. Guzeltepe and M. Sari, Quantum codes from codes over the ring $\mathbb{F}_q+\alpha\mathbb{F}_q$, Quantum Inf. Process., 18 (2019), Art. 365, 21 pp.
doi: 10.1007/s11128-019-2476-2.
|
[18]
|
X. He, L. Xu and H. Chen, New $q$-ary quantum MDS codes with distances bigger than $\frac{q}{2}$, Quantum Inf. Process., 15 (2016), 2745-2758.
doi: 10.1007/s11128-016-1311-2.
|
[19]
|
H. Islam and O. Prakash, Quantum codes from the cyclic codes over $\mathbb{F}_{p}[u,v,w]/\langle u^{2}-1,v^{2}-1,w^{2}-1, uv-vu,vw-wv,wu-uw\rangle$, J. Appl. Math. Comput., 60 (2019), 625-635.
doi: 10.1007/s12190-018-01230-1.
|
[20]
|
H. Islam, O. Prakash and D. K. Bhunia, Quantum codes obtained from constacyclic codes, Int J Theor Phys., 58 (2019), 3945-3951.
doi: 10.1007/s10773-019-04260-y.
|
[21]
|
H. Islam, R. K. Verma and O. Prakash, A family of constacyclic codes over $\mathbb{F}_{p^m}[u, v]/\langle u^{2}-1, v^{2}-1, uv-vu\rangle$, Int. J. Inf. Coding Theory, (2020).
doi: 10.1504/IJICOT.2019.10026515.
|
[22]
|
H. Islam, O. Prakash and R. K. Verma, Quantum codes from the cyclic codes over $\mathbb{F}_{p}[v, w]/\langle v^{2}-1, w^{2}-1, vw-wv\rangle$, Springer Proceedings in Mathematics & Statistics, 307 (2020).
doi: 10.1007/978-981-15-1157-8\_6.
|
[23]
|
X. Kai and S. Zhu, Quaternary construction of quantum codes from cyclic codes over $\mathbb{F}_{4}+u\mathbb{F}_{4}$, Int. J. Quantum Inf., 9 (2011), 689-700.
doi: 10.1142/S0219749911007757.
|
[24]
|
X. Kai, S. Zhu and P. Li, Constacyclic codes and some new quantum MDS codes, IEEE Trans. Inform. Theory, 60 (2014), 2080-2086.
doi: 10.1109/TIT.2014.2308180.
|
[25]
|
M. E. Koroglu and I. Siap, Quantum codes from a class of constacyclic codes over group algebras, Malays. J. Math. Sci., 11 (2017), 289-301.
|
[26]
|
R. Li, Z. Xu and X. Li, Binary construction of quantum codes of minimum distance three and four, IEEE Trans. Inform. Theory, 50 (2004), 1331-1336.
doi: 10.1109/TIT.2004.828149.
|
[27]
|
R. Li and Z. Xu, Construction of $[[n, n-4, 3]]_q$ quantum codes for odd prime power $q$, Phys. Rev. A, 82 (2010), 052316, 1-4.
doi: 10.1103/PhysRevA.82.052316.
|
[28]
|
J. Li, J. Gao and Y. Wang, Quantum codes from $(1-2v)$-constacyclic codes over the ring $\mathbb{F}_{q}+u\mathbb{F}_{q}+v\mathbb{F}_{q}+uv\mathbb{F}_{q}$, Discrete Math. Algorithms Appl., 10 (2018), 1850046, 8 pp.
doi: 10.1142/S1793830918500465.
|
[29]
|
F. Ma, J. Gao and F. W. Fu, Constacyclic codes over the ring $\mathbb{F}_{p} +v\mathbb{F}_{p}+v^{2}\mathbb{F}_{p}$ and their applications of constructing new non-binary quantum codes, Quantum Inf. Process., 17 (2018), Art. 122, 19 pp.
doi: 10.1007/s11128-018-1898-6.
|
[30]
|
F. Ma, J. Gao and F. W. Fu, New non-binary quantum codes from constacyclic codes over $\mathbb{F}_{p}[u,v]/\langle u^2-1,v^2-v,uv-vu\rangle$, Adv. Math. Commun., 13 (2019), 421-434.
doi: 10.3934/amc.2019027.
|
[31]
|
M. Ozen, N. T. Ozzaim and H. Ince, Quantum codes from cyclic codes over $\mathbb{F}_{3} +u\mathbb{F}_{3}+v\mathbb{F}_{3}+uv\mathbb{F}_{3}$, Int. Conf. Quantum Sci. Appl. J. Phys. Conf. Ser., 766 (2016).
|
[32]
|
J. Qian, W. Ma and W. Gou, Quantum codes from cyclic codes over finite ring, Int. J. Quantum Inf., 7 (2009), 1277-1283.
|
[33]
|
M. Sari and I. Siap, On quantum codes from cyclic codes over a class of nonchain rings, Bull. Korean Math. Soc., 53 (2016), 1617-1628.
doi: 10.4134/BKMS.b150544.
|
[34]
|
A. K. Singh, S. Pattanayek, P. Kumar and K. P. Shum, On Quantum codes from cyclic codes over $\mathbb{F}_{2} +u\mathbb{F}_{2}+u^2\mathbb{F}_{2}$, Asian-Eur. J. Math., 11 (2018), 1850009, 11 pp.
doi: 10.1142/S1793557118500092.
|
[35]
|
P. W. Shor, Scheme for reducing decoherence in quantum memory, Phys. Rev.A, 52 (1995), 2493-2496.
doi: 10.1103/PhysRevA.52.R2493.
|
[36]
|
X. Zheng and B. Kong, Constacyclic codes over $\mathbb{F}_{p^m}[u_1,u_2,\dots,u_k]/\langle u^2_i=u_i,u_iu_j=u_ju_i\rangle$, Open Math, 16 (2018), 490-497.
doi: 10.1515/math-2018-0045.
|